1. Bose B. K. Evaluation of Modern Power Semiconductor Devices and Future Trends of Converters.
IEEE Trans. Ind. Appl. 28 (2) (1992), 403–413 https://doi.org/10.1109/28.126749
[CROSSREF]
2. Buttay C, Planson D, Allard B, Bergogne D, Bevilacqua P, Joubert C, Lazar M, Martin C, Morel H, Tournier D, Raynaud C.. State of the art of high temperature power electronics.
Mater. Sci. Eng. B:Solid-State Mater. Adv. Technol. 176 (4) (2011), 283–288 https://doi.org/10.1016/j.mseb.2010.10.003
[CROSSREF]
3. Lee J, Jung D, Oh S, Jung J. High Technology and Latest Trends of WBG Power Semiconductors. J. Micro- electron. Packag. Soc. 25 (4) (2018), 17–23 https://doi.org/10.6117/kmeps.2018.25.4.017
4. Ericsen T. Future navy application of wide bandgap power semiconductor devices.
Proc. IEEE. 90 (6) (2002), 1077–1082 https://doi.org/10.1109/JPROC.2002.1021572
[CROSSREF]
5. Yoon S. W, Glover M. D, Shiozaki K. Nickel-tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles.
IEEE Trans. Power Electron. 28 (5) (2013), 2448–2456 https://doi.org/10.1109/TPEL.2012.2212211
[CROSSREF]
6. Xian J. W, Belyakov S. A, Gourlay C. M. Con- trolling Bulk Cu6Sn5 Nucleation in Sn0.7Cu/Cu Joints with Al Micro-alloying.
J. Electron. Mater. 45 (1) (2016), 69–78 https://doi.org/10.1007/s11664-015-4092-y
[CROSSREF] [PDF]
7. Lee H, Smet V, Tummala R. A Review of SiC Power Module Packaging Technologies Challenges Advances and Emerging Issues.
IEEE J. Emerg. Sel. Top. Power Electron. 8 (1) (2020), 239–255 https://doi.org/10.1109/JESTPE.2019.2951801
[CROSSREF]
8. Mustain H. A, Brown W. D, Ang S. S. Transient liquid phase die attach for high-temperature silicon carbide power devices.
IEEE Trans. Components Packag. Technol. 33 (3) (2010), 563–570 https://doi.org/10.1109/TCAPT.2010.2046901
[CROSSREF]
9. Zeng G, McDonald S., Nogita K. Development of high-temperature solders Review.
Microelectron. Reliab. 52 (7) (2012), 1306–1322 https://doi.org/10.1016/j.microrel.2012.02.018
[CROSSREF]
10. Pei L. S, Pan B, Zhang H, Ng W, Wu B, Siow K. S, Sabne S, Tsuriya M. High-Temperature Pb-Free Die Attach Material Project Phase 1 :Survey Result.
International Conference on Electronics Packaging (ICEP)Yamagata, Japan. (2017), 51–56
[CROSSREF]
11. Zhang H, Minter J, Lee N. C. A Brief Review on High-Temperature Pb-Free Die-Attach Materials.
J. Electron. Mater. 48 (1) (2019), 201–210 https://doi.org/10.1007/s11664-018-6707-6
[CROSSREF] [PDF]
12. Hong W. S, Goo G, Hwang U. H. Verification Guideline of Pb-free Solder Joint Reliability for Military Electronics. J. Korean. Weld. Soc. 30 (3) (2012), 242–248 https://doi.org/10.5781/KWJS.2012.30.3.242
13. Ohadi M, Qi J. Thermal Management of Harsh- Environment Electronics.
Twentieth Annual IEEE Semiconduc- tor Thermal Measurement and Management Symposium. San Jose, Ca, USA: (2004), 231–240
[CROSSREF]
14. Hu B, Yang F, Peng Y, Ji H, Yang S, Yang M, Li M. Rapid formation of Cu-Cu joints with high shear strength using multiple-flocculated Ag nanoparticle paste.
J. Mater. Sci. Mater. Electron. 30 (8) (2019), 8071–8079 https://doi.org/10.1007/s10854-019-01129-y
[CROSSREF] [PDF]
15. Roh M. H, Nishikawa H, Jung J. P. A Review of Ag Paste Bonding for Automotive Power Device Pac- kaging.
J. Microelectron. Packag. Soc. 22 (4) (2015), 15–23 https://doi.org/10.6117/kmeps.2015.22.4.015
[CROSSREF] [PDF]
16. Roh M.-H, Nishikawa H, Jung J. P, Kim W. Trasient Liquid Phase bonding for Power Semiconductor.
J. Microelectron. Packag. Soc. 24 (1) (2017), 27–34 https://doi.org/10.6117/kmeps.2017.24.1.027
[CROSSREF] [PDF]
17. Zhang W, Chen J, Deng Z, Liu Z, Huang Q, Guo W, Huang J. The pressureless sintering of micron silver paste for electrical connections.
J. Alloys Compd. 795 (4) (2019), 163–167 https://doi.org/10.1016/j.jallcom.2019.04.270
[CROSSREF]
18. Siow K. S, Chua S. T. Thermal Ageing Studies of Sintered Micron-Silver (Ag) Joint as a Lead-Free Bonding Material.
Met. Mater. Int. (2019), https://doi.org/10.1007/s12540-019-00394-0
[CROSSREF] [PDF]
19. Yoon J. W, Back J. H, Jung S. B. Effect of surface finish metallization on mechanical strength of Ag sintered joint.
Microelectron. Eng. 198 (7) (2018), 15–21 https://doi.org/10.1016/j.mee.2018.06.009
[CROSSREF]
20. Cook G. O, Sorensen C. D. Overview of transient liquid phase and partial transient liquid phase bonding.
J. Mater. Sci. 46 (16) (2011), 5305–5323 https://doi.org/10.1007/s10853-011-5561-1
[CROSSREF] [PDF]
21. Park M. S, Gibbons S. L, Arróyave R. Prediction of processing maps for transient liquid phase diffusion bonding of Cu/Sn/Cu joints in microelectronics packaging.
Microelectron. Reliab. 54 (6) (2014), 1401–1411 https://doi.org/10.1016/j.microrel.2014.02.023
[CROSSREF]
22. Mokhtari O. A review:Formation of voids in solder joint during the transient liquid phase bonding process Causes- and solutions.
Microelectron. Reliab. 98 (10) (2018), 95–105 https://doi.org/10.1016/j.microrel.2019.04.024
[CROSSREF]
23. Zhao N, Zhong Y, Huang M. L, Ma H. T, Dong W. Growth kinetics of Cu6Sn5intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient. Sci. Rep. 5 (1) (2015), 1–12 https://doi.org/10.1038/srep13491
24. Baek S, Park Y, Oh C, Chun E, Kang N. Modeling and experimental verification of intermetallic compounds grown by electromigration and thermomigration for Sn-0.7Cu solders.
J. Elctron. Mater. 48 (1) (2019), 142–151 https://doi.org/10.1007/s11664-018-6786-4
[CROSSREF] [PDF]
25. Heo M, Kang N, Park S, Kim J, Hong W. Kinetics of Intermetallic Compounds Growth Induced by Elec- tromigration of Sn-0.7Cu Solder.
Korean J. Met. Mater. 54 (12) (2016), 908–915 https://doi.org/10.3365/KJMM.2016.54.12.908
[CROSSREF]
26. Feng J, Hang C, Tian Y, Liu B, Wang C. Growth kinetics of Cu
6Sn
5intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current.
Sci. Rep. 8 (1) (2018), 1–10 https://doi.org/10.1038/s41598-018-20100-1
[CROSSREF] [PDF]
27. Yin Z, Sun F, Guo M. The fast formation of Cu- Sn intermetallic compound in Cu/Sn/Cu system by induction heating process.
Mater. Lett. (2018), 215 207–2 10. https://doi.org/10.1016/j.matlet.2017.12.102
[CROSSREF]
28. Shao H, Wu A, Bao Y, Zhao Y, Liu L, Zou G. Rapid Ag/Sn/Ag transient liquid phase bonding for high-temperature power devices packaging by the assistance of ultrasound.
Ultrason. Sonochem. (2017), 37 561–570 https://doi.org/10.1016/j.ultsonch.2017.02.016
[CROSSREF]
29. Li Z. L, Dong H. J, Song X. G, Zhao H. Y, Feng J. C, Liu J. H, Tian H, Wang S. J. Rapid formation of Ni
3Sn
4joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process.
Ultrason. So- nochem. (2017), 36 111–120 https://doi.org/10.1016/j.ultsonch.2016.12.026
[CROSSREF] [PDF]
30. Bao Y, Wu A, Shao H, Zhao Y, Zou G. Effect of powders on microstructures and mechanical properties for Sn-Ag transient liquid phase bonding in air.
J. Mater. Sci. Mater. Electron. 29 (12) (2018), 10246–10257 https://doi.org/10.1007/s10854-018-9076-2
[CROSSREF] [PDF]
31. Sharif A, Gan C. L, Chen Z. Transient liquid phase Ag-based solder technology for high-temperature packaging applications.
J. Alloys Compd. (2014), 587 365–368 https://doi.org/10.1016/j.jallcom.2013.10.204
[CROSSREF]
32. Yu F, Liu H, Hang C, Chen H, Li M. Rapid Formation of Full Intermetallic Bondlines for Die Attachment in High-Temperature Power Devices Based on Micro-sized Sn-Coated Ag.
Particles Jom. 71 (9) (2019), 3049–3056 https://doi.org/10.1007/s11837-019-03544-2
[CROSSREF] [PDF]
33. Yu F, Chen H, Hang C, Li M. Fabrication of high-temperature-resistant bondline based on multilayer core-shell hybrid microspheres for power devices.
J. Mater. Sci. Mater. Electron. 30 (4) (2019), 3595–3603 https://doi.org/10.1007/s10854-018-00637-7
[CROSSREF] [PDF]
34. Xiong M, Zhang L, Sun L, He P, Long W. Effect of CuZnAl particles addition on microstructure of Cu/Sn58Bi/Cu TLP bonding solder joints.
Vacuum. 167 (3) (2019), 301–306 https://doi.org/10.1016/j.vacuum.2019.06.024
[CROSSREF]
35. Sohn S, Moon B, Lee J, Kang N, Moon Y. Inter- layer Material Design Reducing Transient Liquid Phase Bonding Time.
Electron. Mater. Lett. 16 (2) (2020), 106–114 https://doi.org/10.1007/s13391-019-00191-2
[CROSSREF] [PDF]