1. Introduction
2. Laser Welding Characteristics of Al/Cu Alloys
Table 1
3. Characteristics of Al/Cu Dissimilar Material Joints
3.1 Tensile Strength
Table 2
No | Source/ wave length | Modulation | Upper metal/ thickness (mm) | Lower metal/ thickness (mm) | Fracture Load (N) | Welding Length (mm) | Equivalent Tensile Strength (MPa) | Year (Ref.) |
---|---|---|---|---|---|---|---|---|
1 | Nd:YAG 1064 nm | Spot | E-Cu58 1.2 | Al99.9 1.2 | 1,100 | - | - | 20093) |
2 | Disk 1030 nm | Linear Line | Al1050 0.2 | Cu1020 1.0 | ≈490 | 70 | 127.4 | 20124) |
3 | Nd:YAG 1064 nm | Pulse Linear Line | Al1050 0.45 | Cu1020 0.3 | ≈1,187 | 45 | 87.8 | 20195) |
4 | Fiber 1070 nm | Beam Oscillation | Al1050 0.45 | Cu1020 0.3 | ≈1,206 | 45 | 89.2 | 20196) |
5 | Nd:YAG 1064 nm | Linear Line | Al1060 0.3 | Cu-T2 0.3 | ≈539 | 20 | 89.9 | 20147) |
6 | Fiber 1070 nm | Linear Line | Al1050 0.3 | Cu-OF 0.3 | 540 | 60 | 205 | 20148) |
7 | Fiber 1070 nm | Pulse Linear Line | Al1060 0.3 | Cu-OF 0.3 | ≈1,078 | 45 | 79.8 | 20199) |
8 | Green 515 nm | Linear Line | Al6061 0.4 | Cu1020 0.4 | - | 50 | 79.6 | 202110) |
9 | Green 515 nm | Beam Oscillation | Cu-OF 0.4 | Al1050 0.4 | - | 50 | 79.6 | 202111) |
10 | Disk 1030 nm | Spiral Spot | Cu-OF 0.4 | Al1050 0.4 | ≈350 | 40 | 21.8 | 202212) |
11 | Fiber 1070 nm | Linear Line | Al3003 0.3 | Cu101 0.3 | 76 | - | - | 201613) |
3.2 Intermetallic Compound Formation and Effects
Table 3
3.3 Electrical Resistance
Table 4
No | Upper metal/ thickness (mm) | Lower metal/ thickness (mm) | Method | Electrical resistance (μΩ) | Year (Ref.) |
---|---|---|---|---|---|
1 | Al5754 1.0 | Cu-OF 1.0 | 4 Point Probe Measurement | ≈32 | 201211) |
2 | Al1050 0.2 | E-Cu 0.5 | Direct Electric Measurement | 204 | 201623) |
3 | Al1050 0.6 | Cu-OF 0.6 | Sequential Resistance Measurement | 520 | 201724) |
4 | Al1050 2.0 | Cu-OF 2.0 | 4 Point Probe Measurement | ≈10.5 | 201925) |
4. Laser Welding Technology
4.1 Spatial Modulation
4.2 Temporal Modulation
4.3 Laser Characteristics by Wavelength
4.4 Monitoring for Laser Welding
5. Conclusion
1) It is possible to ensure the bond strength at the level of the Al base material strength by optimizing the process variables of the Al/Cu dissimilar material welding, and the spatial and temporal modulation techniques are used to ensure the weld strength.
2) For the bond strength and electrical conductivity, it is necessary to select a welding process that can keep the formation of intermetallic compounds below a certain level.
3) Lasers with high absorption rates, such as green and blue lasers, have been developed to ensure the productivity and soundness of Al/Cu dissimilar material welds, and various deep learning methods can be applied to predict the quality.