1. International Atomic Energy Agency. IAEA Anuual Report 2018, Vienna, Austria. (2018) 31–38.
2. International Atomic Energy Agency. Global Status of Decommissioning of Nuclear Installations, Austria. (2023) 2–110.
3. International Atomic Energy Agency, Nuclear Decommissioning. IAEA BULLETIN, Vienna, Austria. (2023) 4–9.
4. International Atomic Energy Agency. Decommissioning after a Nuclear Accident, Vienna, Austria. (2019) 2–110.
5. International Atomic Energy Agency. Status of the Decommissioning of Nuclear Facilities Around the world, Austria. (2014) 3–24.
6. International Atomic Energy Agency, Radiation Protection and Safety of Radiation Sources:International Basic Safety Standards. IAEA Safety Standards Series No. GSR Part 3, Vienna, Austria. (2014)
7. D. C. Invernizzi, G. Locatelli, A. Velenturf, P. Love ED, P. Purnell, and N. J. Brookes, Developing policies for the end?of?life of energy infrastructure:coming to terms with the challenges of decommissioning,
Energy Policy. 144 (2020) 1–7.
https://doi.org/10.1016/j.enpol.2020.111677
[CROSSREF]
9. World Energy Council, Energy Infrastructure - Affordability Enabler or Decarbonisation Constraint?, Innovation Insights Brief. World Energy Council, London, UK. (2019)
10. International Atomic Energy Agency, Decommissioning of Nuclear Power Plants, Research Reactors and Other Nuclear Fuel Cycle Facilities, IAEA Safety Standards, Specific Safety Guide No. SSG 47. IAEA, Vienna, Austria. (2018)
11. Nuclear safety and regulation. nuclear safety public participation presentation3. (2020) 3–9.
12. Organisation for Economic Co-operation and Development and Nuclear Energy Agency, Ensuring the Adequacy of Funding Arrangements for Decommissioning and Radioactive Waste Management. Nuclear Energy Agency, Paris, France. (2021)
17. G. R. Lee, B. J. Lim, and C. D. Park, Evaluation of metal cutting technologies for decommissioning of nuclear power plants, Transactions of the Korean Nuclear Society Spring Meeting Jeju, Jeju, Korea. (2019) 1–4.
18. K. S. Jeong, G. H. Kim, J. K. Moon, and B. S. Choi, Cutting Technology for Decommissioning of the Reactor Pressure Vessels in Nuclear Power Plants, Transactions of the Korean Nuclear Society Spring Meeting Jeju, Jeju, Korea. (2012) 282–283.
20. J. Onodera, H. Yabuta, T. Nishizono, C. Nakamura, and Y. Ikezawa, Characterization of Aerosols from Dismantling Work of Experimental Nuclear Power Reactor Decommissioning,
J. Aerosol. Sci. 22 (1991) 747–750.
[CROSSREF]
21. M. Brandauer, H. Geckeis, S. Gentes, A. Heneka, C. O. Krauß, M. Plaschke, D. Schild, and W. Tobie, Improvement of a Separation Method for the Reduction of Secondary Waste from the Water-jet Abrasive Suspension Cutting Technique, (2017)
23. M. Tezukaa, Y. Nakamuraa, H. Iwai, K. Sano, and Y. Fukui, The Development of Thermal and Mechanical Cutting Technology for the Dismantlement of the Internal Core of Fukushima Daiichi NPS,
J. Nucl. Sci. Technol. 51(7-8) (2014) 1054–1058.
https://doi.org/10.1080/00223131.2014.912969
[CROSSREF]
26. G. Frederick, Welding and Repair Technology Center:Evaluations of an Electrical Discharge Machining (EDM) Removal Process for In-Service Repair Applications, Electric Power Research Institute, USA. (2008) 2–3.
27. S. Tsugio, Y. Fukui, and T. Ueda, Development of a Cutting Technique of Core Structural Materials and Fuel Debris. Applicability test of the plasma jet cutting technique, Japan Atomic Energy Agency. 35 (2016)
28. X. Huang and H. Ran, Application of Underwater Electric Discharge Machining in Nuclear Power Plant,
2017 25th International Conference on Nuclear Engineering, Shanghai, China. (2017)
https://doi.org/10.1115/ICONE25-66572
[CROSSREF]
34. K. Kim, M. K. Song, S. J. Lee, D. Shin, J. Suh, and J. D. Kim, Fundamental Study on Underwater Cutting of 50 mm-Thick Stainless Steel Plates Using a Fiber Laser for Nuclear Decommissioning,
Applied sciences. 12(1) (2022) 495.
https://doi.org/10.3390/app12010495
[CROSSREF]
35. A. Khan and P. Hilton, Optimization Of Underwater Laser Cutting For Decommissioning Purposes,
International Congress on Applications of Lasers &ElectroOptics, Orlando, USA. (2018) 294–302.
https://doi.org/10.2351/1.5063072
[CROSSREF]
36. K. Tamura and R. Yamagishi, Laser cutting conditions for steel plates having a thickness of more than 100 mm using a 30 kW fiber laser for nuclear decommissioning,
Mech. Engine. J. 3(3) (2016) 1–9.
https://doi.org/10.1299/mej.15-00590
[CROSSREF]
40. S. Marimuthu, A. K. Nath, P. K. Dey, D. Misra, D. K. Bandyopadhyay, and S.P. Chaudhuri, Design and evaluation of high-pressure nozzle assembly for laser cutting of thick carbon steel,
Int. J. Adv. Manuf. Tech. 92 (2017) 15–24.
https://doi.org/10.1007/s00170-017-0107-6
[CROSSREF]
42. J. S. Shin, S. Y. Oh, H. Park, C. M. Chung, S. Seon, T. S. Kim, L. Lee, and J. Lee, Laser cutting of steel plates up to 100 mm in thickness with a 6-kW fiber laser for application to dismantling of nuclear facilities,
Opt. Lasers. Eng. 100 (2018) 98–104.
https://doi.org/10.1016/j.optlaseng.2017.08.001
[CROSSREF]
43. J. S. Shin, S. Y. Oh, H. Park, C. M. Chung, S. Seon, T. S. Kim, L. Lee, and J. Lee, Cutting performance of thick steel plates up to 150 mm in thickness and large size pipes with a 10-kW fiber laser for dismantling of nuclear facilities,
Ann. Nucl. Energy. 122 (2018) 62–68.
https://doi.org/10.1016/j.anucene.2018.08.029
[CROSSREF]
44. J. S. Shin, S. Y. Oh, H. Park, T. S. Kim, L. Lee, C. M. Chung, and J. Lee, Underwater cutting of 50 and 60mm thick stainless steel plates using a 6-kW fiber laser for dismantling nuclear facilities,
Opt. Laser. Technol. 115 (2019) 1–8.
https://doi.org/10.1016/j.optlastec.2019.02.005
[CROSSREF]
48. J. S. Shin, S. Y. Oh, S. Park, H. Park, T. S. Kim, L. Lee, Y. Kim, and J. Lee, Underwater laser cutting of stainless steel up to 100 mm thick for dismantling application in nuclear power plants,
Ann. Nucl. Energy. 147 (2020) 107655.
https://doi.org/10.1016/j.anucene.2020.107655
[CROSSREF]