2. J. H. Hattel, M. R. Sonne, and C. C. Tutum, Modelling residual stresses in friction stir welding of Al alloys a review of possibilities and future trends,
Int. J. Adv. Manuf. Technol. 76 (2015) 1793–1805.
https://doi.org/10.1007/s00170-014-6394-2
[CROSSREF]
3. N. Kumar, R. S. Mishra, and J. A. Baumann, Model for Understanding Residual Stress Development in Friction Stir Welded Structures. In:Residual Stresses in Friction Stir Welding,
1st edition Butterworth-Heinemann. (2013) 28–35.
[CROSSREF]
4. J. He, Z. Ling, and H. Li, Effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded 6061-T6 aluminum alloy thick plate,
Int. J. Adv. Manuf. Technol. 84 (2016) 1953–1961.
https://doi.org/10.1007/s00170-015-7859-7
[CROSSREF]
6. M. Peel, A. Steuwer, M. Preuss, and P. J. Withers, Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds,
Acta. Mater. 51 (2003) 4791–4801.
https://doi.org/10.1016/S1359-6454(03)00319-7
[CROSSREF]
7. Z. Feng, X. L. Wang, S. A. David, and P. S. Sklad, Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6,
Sci. Technol. Weld. Join. 12 (2007) 348–356.
https://doi.org/10.1179/174329307X197610
[CROSSREF]
12. Z. Zhang, Z. Zhang, and . Zhang, Numerical investigations of size effects on residual states of friction stir weld,
Proceeding of the Institution of Mechanical Engineers, Part B:J. Eng. Manuf. 228 (2014) 572–581.
https://doi.org/10.1177/0954405413506191
[CROSSREF]
13. M. I. Costa, C. Leitão, and D. M. Rodrigues, Parametric study of friction stir welding induced distortion in thin aluminium alloy plates:A coupled numerical and experimental analysis,
Thin.Walled. Struct. 134 (2019) 268–276.
https://doi.org/10.1016/j.tws.2018.10.027
[CROSSREF]
15. R. W. McCune, A. Murphy, M. Price, and J. Butterfield, The influence of friction stir welding process idealization on residual stress and distortion predictions for future airframe assembly simulations,
J. Manuf. Sci. Eng. Trans. 134 (2012) 1–10.
https://doi.org/10.1115/1.4006554
[CROSSREF]
16. P. Sun and X. Michaleris, Finite element analysis of thermal tensioning techniques mitigating weld buckling distortion, Weld. J. 76 (1997) 451-s
17. P. Michaleris, J. Dantzig, and D. Tortorelli, Minimization of welding residual stress and distortion in large structures, Weld. J. 78 (1999) 361-s
18. K. K. Tamma, Encyclopedia of Thermal Stresses, Springer Publishers. (2013)
19. D. A. Price, S. W. Williams, A. Wescott, C. J. Rezai, A. Harrison, A. M. Peel, P. Staron, and M. Kocak, Steuwer, Distortion control in welding by mechanical tensioning,
Sci. Technol. Weld. Join. 12 (2007) 620–633.
https://doi.org/10.1179/174329307x213864
[CROSSREF]
23. J. Altenkirch, A. Steuwer, P. J. Withers, S. W. Williams, M. Poad, and S. W. Wen, Residual stress engineering in friction stir welds by roller tensioning,
Sci. Technol. Weld. Join. 14 (2009) 185–192.
https://doi.org/10.1179/136217108x388624
[CROSSREF]
26. W. He, J. Liu, W. Hu, G. Wang, and W. Chen, Controlling residual stress and distortion of friction stir welding joint by external stationary shoulder,
High Temp. Mater. Process,. 38 (2019) 662–671.
https://doi.org/10.1515/htmp-2019-0005
[CROSSREF]
31. M. Z. H. Khandkar, J. A. Khan, and A. P. Reynolds, Prediction of temperature distribution and thermal history during friction stir welding:Input torque based model,
Sci. Technol. Weld. Join. 8 (2003) 165–174.
https://doi.org/10.1179/136217103225010943
[CROSSREF]
39. C. Desrayaud, S. Ringeval, S. Girard, and J. H. Driver, A novel high straining process for bulk materials The development of a multipass forging system by compression along three axes,
J. Mater. Process Technol. 172 (2006) 152–158.
https://doi.org/10.1016/j.jmatprotec.2005.09.015
[CROSSREF]
52. M. Riahi and H. Nazari, Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation,
Int. J. Adv. Manuf. Technol. 55 (2011) 143–152.
https://doi.org/10.1007/s00170-010-3038-z
[CROSSREF]
53. A. H. Jamshidi, S. Serajzadeh, and A. H. Kokabi, Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061,
Int. J. Adv. Manuf. Technol. 61 (2012) 149–160.
https://doi.org/10.1007/s00170-011-3713-8
[CROSSREF]
56. M. R. Sonne, C. C. Tutum, J. H. Hattel, A. Simar, and B. D. Meester, The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3,
J. Mater. Process Technol. 213 (2013) 477–486.
https://doi.org/10.1016/j.jmatprotec.2012.11.001
[CROSSREF]
59. C. Casavola, A. Cazzato, V. Moramarco, and C. Pappalettere, Influence of the clamps configuration on residual stresses field in friction stir welding process,
J. Strain Anal. Eng. Des. 50 (2015) 232–242.
https://doi.org/10.1177/0309324715573361
[CROSSREF]
62. S. B. Aziz, M. W. Dewan, D. J. Huggett, M. A. Wahab, A. M. Okeil, and T. W. Liao, Impact of Friction Stir Welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints,
Acta. Metall. Sin. 29(2016) 869–883.
https://doi.org/10.1007/s40195-016-0466-2
[CROSSREF]
63. M. Bachmann, J. Carstensen, L. Bergmann, J. F. D. Santos, C. S. Song, and M. Rethmeier, Numerical simulation of thermally induced residual stresses in friction stir welding of aluminum alloy 2024-T3 at different welding speeds,
Int. J. Adv. Manuf. Technol. 91 (2017) 1443–1452.
https://doi.org/10.1007/s00170-016-9793-8
[CROSSREF]
65. Z. Hou, J. Sheikh-Ahmad, F. Jarrar, and F. Ozturk, Residual Stresses in Dissimilar Friction Stir Welding of AA2024 and AZ31:Experimental and Numerical Study,
J. Manuf. Sci. Eng. Trans. 140 (2018) 1–10.
https://doi.org/10.1115/1.4039074
[CROSSREF]
67. S. Salimi, P. Bahemmat, and M. Haghpanahi, Study on residual stresses caused by underwater friction stir welding:FE modeling and ultrasonic measurement,
Proceedings of the Institution of Mechnical Engineers, Part E:J. Process Mech. Eng. 233 (2019) 118–137.
https://doi.org/10.1177/0954408917751963
[CROSSREF]
68. X. X. Zhang, L. H. Wu, H. Andrä, W. M. Gan, M. Hofmann, D. Wang, D. R. Ni, B. L. Xiao, and Z. Y. Ma, Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites,
J. Mater. Sci. Technol. 35 (2019) 824–832.
https://doi.org/10.1016/j.jmst.2018.11.005
[CROSSREF]