1. Brandt M. Laser Additive Manufacturing Materials, Design, Technologies, and Applications. Woodhead Pu- blishing, Cambridge, U.K. (2016), https://doi.org/10.1017/CBO9781107415324.004
2. Gu D. Laser Additive Manufacturing of High-Performance Materials.
Springer. https://doi.org/10.1007/978-3-662-46089-4
[CROSSREF]
3. Sames W.J, List F. A, Pannala S, Dehoff R. R, Babu S. S. The metallurgy and processing science of metal additive manufacturing.
Int. Mater. Rev. 61 (5) (2016), 315–360 https://doi.org/10.1080/09506608.2015.1116649
[CROSSREF]
4. Gonzales D.S, Gonzales D. S. THE EFFECT OF OXYGEN ON THE GAS TUNGSTEN ARC WELDA- BILITY OF LASER- POWDER BED FUSION FAB- RICATED 304L STAINLESS STEEL. Mater. Perform. Charact. 8 (4) (2019), http://dx.doi.org/10.1520/mpc20180115
5. Hawk C. Ph. D. thesis, Laser Welding Behavior of Laser Powder Bed Fusion Additive Manufactured 304L Stainless Steel Stainless. Colorado School of Mines. (2019)
6. Matilainen V.P, Pekkarinen J, Salminen A. Welda- bility of additive manufactured stainless steel. Phys. Proc. 83 (2016), 808–817 https://doi.org/10.1016/j.phpro.2016.08.083
7. Raza T, Andersson J, Svensson L. E. Varestraint weldability testing of additive manufactured alloy 718.
Sci. Technol. Weld. Join. 23 (7) (2018), 606–611 https://doi.org/10.1080/13621718.2018.1437338
[CROSSREF]
8. Park S. MS thesis, A Study on the Weld Solidification Cracking Susceptibility And Corrosion Characteristics of Additive Manufactured Type 316L Stainless Steel. Changwon National Univ. Changwon, Korea. (2020)
9. Author T, Date I, Version T, Doi U. R. L. Varestraint Test for Solidification Crack Susceptibility in Weld Metal of Austenitic Stainless Steels. Trans. JWRI. 3 (1) (1974), 79–88
10. Tahira Raza, Joel Andersson and Lars-Erik Svensson, Varestraint Testing of Selective Laser Additive Manu- factured Alloy 718-Influence of Grain Orientation. Met. 9 (10) (2019), 1113https://doi.org/10.3390/met9101113
11. Lippold J, Kotecki D. Welding Metallurgy and Weldability of Stainless Steels. American Library Association. (2005), https://doi.org/10.1002/9781118960332
12. Lippold JohnC Welding Metallurgy and Weldability. John Wikey &Sons, Inc. (2015), https://doi.org/10.1002/9781118960332
13. kou Sindo. Welding metallurgy. 2nd ed. New Jersey, USA(2002), https://doi.org/10.1002/0471434027
14. Lippold J.C. Solidification Behavior and Cracking Susceptibility of Pulsed-Laser Welds in Austenitic Stainless Steels. Weld. J. 73 (6) (1994), 129–139
15. Kujanpaa V.P.B.Y. Weld Discontinuities in Austenitic Stainless Steel Sheets - Effect of Impurities and Solidi- fication Mode. Weld J. 63 (12) (1983), 369–375
16. Bang K.S, Pak S. H, Ahn S. K. Evaluation of weld metal hot cracking susceptibility in superaustenitic stainless steel.
Met. Mater. Int. 19 (6) (2013), 1267–1273 https://doi.org/10.1007/s12540-013-6019-6
[CROSSREF]
17. Nakayama J, Nishimoto K, Kiuchi K, Hata K, Okabe Y, Saida K. Hot cracking behaviour and susceptibility of extra high purity type 310 stainless steels.
Sci. Technol. Weld. Join. 15 (1) (2010), 87–96 https://doi.org/10.1179/136217109x12590746472454
[CROSSREF]