1. H.-C. Yoo, Recent study of materials and welding methods for nuclear power plant,
J. of Welding and Joining. 33(1) (2015) 14–23. (in Korean)
[CROSSREF] [PDF]
2. J. C. Lippold, Elevated Temperature, Solid-State Cracking in Welds, in Cracking Phenomena in Welds IV, Springer. (2016) 229–265.
3. S. Kou, A Simple Index for Predicting the Susceptibility to Solidification Cracking, Welding Journal. 94(12) (2015) 374s–388s.
4. S. Kou, A criterion for cracking during solidification,
Acta Materialia. 88 (2015) 366–374.
[CROSSREF]
5. N. Coniglio and C. E. Cross, Mechanisms for Solidification Crack Initiation and Growth in Aluminum Welding,
Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science. (2009) 40a(11) 2718–2728.
[CROSSREF]
6. M. Rappaz, J. M. Drezet, and M. Gremaud, A new hot-tearing criterion,
Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science. 30(2) (1999) 449–455.
[CROSSREF]
7. F. Matsuda, H. Nakagawa, K. Nakada, and H. Okada, The VDR cracking test for solidification crack susceptibility on weld metals and its application to aluminum alloys, Trans JWRI. (1979) 8 85–95.
8. U. Feurer, Mathematical Model by the Hot Cracking Tendency of Binary Aluminum Alloys, Giessereiforschung. 28(2) (1976) 75–80.
9. N. N. Prokhorov, Resistance to hot tearing of cast metals during solidification, Russian Castings Production. 2(2) (1962) 172–175.
10. J. C. Lippold, Recent developments in weldability testing for advanced materials, ASM International-Joining of Advanced and Specialty Materials. VII (2005)
11. T. Kannengiesser and T. Boellinghaus, Hot cracking tests- an overview of present technologies and applications,
Welding in the World. 58(3) (2014) 397–421.
[CROSSREF] [PDF]
12. G. Goodwin, Test methods for evaluating hot cracking: review and perspective. Oak Ridge National Lab; TN (USA): (1990)
13. E. A. Torres, F. Montoro, R. D. Righetto, and A. J. Ramirez, Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking,
J. Microsc. 254(3) (2014) 157–165.
[CROSSREF] [PUBMED] [PDF]
14. D. Feron and R. W. Staehle. Stress Corrosion Cracking of Nickel Based Alloys in Water-cooled Nuclear Reactors: The Coriou Effect. Woodhead Publishing; (2016), p. 11–18
15. K. Saida, Y. Nomoto, H. Okauchi, H. Ogiwara, and K. Nishimoto, Influences of phosphorus and sulphur on ductility dip cracking susceptibility in multipass weld metal of alloy 690,
Science and Technology of Welding and Joining. 17(1) (2013) 1–8.
[CROSSREF]
16. C. Fink, D. Keil, and M. Zinke, Evaluation of Hot Cracking Susceptibility of Nickel-Based Alloys by The PVR Test,
Welding in the World. (2012) 56(7-8) 37–43.
[CROSSREF]
17. J. Lippold, J. Sowards, G. Murray, B. Alexandrov, and A. Ramirez, Weld solidification cracking in solid-solution strengthened Ni-base filler metals, in Hot Cracking Phenomena in Welds II,
Springer. (2008) 147–170.
[PMC]
18. C. Fink, An investigation on ductility-dip cracking in the base metal heat-affected zone of wrought nickel base alloys—part I: metallurgical effects and cracking mechanism,
Welding in the World. 60(5) (2016) 939–950.
[CROSSREF] [PDF]
19. C. Fink, M. Zinke, and S. Jüttner, An investigation of ductility-dip cracking in the base metal heat-affected zone of wrought nickel base alloys-part II: correlation of PVR and STF results,
Welding in the World. 60(5) (2016) 951–961.
[CROSSREF] [PDF]
20. K. Nishimoto, K. Saida, and H. Okauchi, Microcracking in multipass weld metal of alloy 690 Part 1-Microcracking susceptibility in reheated weld metal,
Science and Technology of Welding and Joining. 11(4) (2013) 455–461.
[CROSSREF]
21. Ogura. Tomo, Y. Morikawa, and K. Saida. Evaluation of Ductility-Dip Cracking Susceptibility in Alloy 690 Laser Multipass Weld Metal by Varestraint Test, in IIW 2017. Shanghai: (2017)
22. Eun-Joon. Chun, Su-Jin. Lee, Jeong. Suh, Namhyun. Kang, and K. Saida, Solidification Cracking Behavior in Austenitic Stainless Steel Laser Welds (Part 1) - Evaluation of Solidification Cracking Susceptibility by Laser Beam Welding Varestraint Test,
J. of Welding and Joining. 34(5) (2016) 54–60. (in Korean)
[CROSSREF] [PDF]
23. Minjung. Kang, Cheolhee. Kim, and Young-Min. Kim, Evaluation of the Laser Weldability of Inconel 713C alloy,
J. of Welding and Joining. 35(1) (2017) 68–73. (in Korean)
[CROSSREF] [PDF]
24. K. Saida, M. Sakamoto, and K. Nishimoto, Mechanical Approach for Prediction of Microcracking in Multipass Weld Metal of Ni-Base Alloy 690,
Materials Science Forum. (2008) 580-582 1–4.
[CROSSREF] [PDF]
25. K. Saida, K. Ohta, and K. Nishimoto, Microcracking susceptibility in dissimilar multipass welds of alloy 690 to type 316L stainless steel using La added filler metals,
Science and Technology of Welding and Joining. 12(7) (2013) 593–603.
[CROSSREF]
26. K. Saida, A. Taniguchi, H. Okauchi, H. Ogiwara, and K. Nishimoto, Prevention of microcracking in dissimilar multipass welds of alloy 690 to type 316L stainless steel by Ce addition to filler metal,
Science and Technology of Welding and Joining. 16(6) (2013) 553–560.
[CROSSREF]
27. N. L. Richards and M. C. Chaturvedi, Effect of minor elements on weldability of nickel base superalloys,
International Materials Reviews. 45(3) (2000) 109–129.
[CROSSREF]
28. J. Andersson, Weldability of precipitation hardening superalloys–influence of microstructure, Chalmers University of Technology. (2011)
29. W. Mo, S. Lu, D. Li, and Y. Li, Effects of M 23C6 on the High-Temperature Performance of Ni-Based Welding Material NiCrFe-7,
Metallurgical and Materials Transactions A. 45(11) (2014) 5114–5126.
[CROSSREF]
30. W. Mo, X. Hu, S. Lu, D. Li, and Y. Li, Effects of Boron on the Microstructure, Ductility-dip-cracking, and Tensile Properties for NiCrFe-7 Weld Metal,
Journal of Materials Science & Technology. 31(12) (2015) 1258–1267.
[CROSSREF]
31. W. Mo, S. Lu, D. Li, and Y. Li, Effects of filler metal composition on the microstructure and mechanical properties for ER NiCrFe-7 multi-pass weldments,
Materials Science and Engineering: A. (2013) 582 326–337.
[CROSSREF]
32. K. Saida, K. Bunda, H. Ogiwara, and K. Nishimoto, Microcracking susceptibility in dissimilar multipass welds of Ni-base alloy 690 and low-alloy steel,
Welding International. 29(9) (2015) 668–680.
[CROSSREF]
33. W. Mo, S. Lu, D. Li, and Y. Li, Effects of Filler Metal Composition on Inclusions and Inclusion Defects for ER NiCrFe-7 Weldments,
Journal of Materials Science & Technology. 29(5) (2013) 458–466.
[CROSSREF]
34. H. T. Lee, S. L. Jeng, C. H. Yen, and T. Y. Kuo, Dissimilar welding of nickel-based Alloy 690 to SUS 304L with Ti addition,
Journal of Nuclear Materials. 335(1) (2004) 59–69.
[CROSSREF]
35. A. J. Ramirez, J. W. Sowards, and J. C. Lippold, Improving the ductility-dip cracking resistance of Ni-base alloys,
Journal of Materials Processing Technology. (2006) 179(1-3) 212–218.
[CROSSREF]
36. K. Yushchenko, V. Savchenko, N. Chervyakov, A. Zvyagintseva, and E. Guyot, Comparative hot cracking evaluation of welded joints of alloy 690 using filler metals inconel®52 and 52 MSS, Welding in the World. 55(9-10) (2011) 28–35.
37. A. Lingenfelter, Welding of Inconel alloy 718: A historical overview,
Superalloy. 718 (1989) 673–683.
[CROSSREF]
38. I. Woo and K. Nishimoto, Metallurgical factors contributing to HAZ cracking susceptibility in cast alloy 718 welds and its improvement by cerium addition,
Metals and Materials-Korea. 7(3) (2001) 241–249.
[CROSSREF]
39. X. Zhang, D.-Z. Li, Y.-Y. Li, and S.-P. Lu, Effect of Nb and Mo on the Microstructure, Mechanical Properties and Ductility-Dip Cracking of Ni-Cr-Fe Weld Metals,
Acta Metallurgica Sinica (English Letters). 29(10) (2016) 928–939.
[CROSSREF] [PDF]
40. J. Unfried-Silgado and A. J. Ramirez, Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking part I: Numerical modeling,
Metals and Materials International. 20(2) (2014) 297–305.
[CROSSREF]
41. A. T. Hope and J. C. Lippold, Development and testing of a high-chromium, Ni-based filler metal resistant to ductility dip cracking and solidification cracking,
Welding in the World. 61(2) (2017) 325–332.
[CROSSREF] [PDF]