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Prediction of the Bead Width Using an Artificial Neural Network
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Abstract

Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor information
about weld characteristics and process parameters as well as to modify those parameters to hold weld
quality within acceptable limits. Typical characteristics are the bead geometry, composition,
microstructure, appearance, and process parameters that govern the quality of the final weld.

The objectives of this paper are to realize the mapping characteristics of bead width through the
neural network and multiple regression method as well as to select the most accurate model in order to
control the weld quality(bead width). The experimental results show that the proposed neural network
estimator can predict bead width with reasonable accuracy, and guarantee the uniform weld quality.
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1. Introduction

Generally the arc welding process is very
complicate due to not only the steep changes in
the physical, chemical and mechanical
properties, but also phase changes in a small
weld pool region. A detailed knowledge of the
temperature field and bead geometry is
important to understand the phenomena of
welding process and to develop the improved
welding techniques. Therefore the effort of
developing relationships between process
parameters and bead width is valuable and
necessary work.
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Robotic arc welding processing generally
involves sophisticated sensing and control
techniques applied to various process
parameters. An overview of modelling and
control for robotic arc welding has been given
by Cook et. a'. Recently, Artificial
Intelligence(AI) such as expert systems,
artificial neural networks, fuzzy logic is a key
technique for controling and monitoring the
robotic welding process. Technique of neural
network offers potential as an alternative to
standard computer techniques in control
technology, and have attracted a widening
interest in their development and application.
Development of the intelligent system for

Journal of KWS, Vol. 18, No. 4, August, 2000



AR 2GE o[ I HEE oS

49

prediction of process parameters for arc
welding has been described in the literature®®.
Cook™ has preliminarily worked at the
development of intelligent control systems
incorporating ANN(Artificial Neural Network).
Andersen® has implemented the models by
Nunes and Tsai, and carried out comparisons
of these models and evaluations against actual
welding data.

The objective of the paper is to investigate
the results obtained in a detailed experimental
study regarding the effects of process
parameters such as wire diameter, gas flow
rate, welding speed, arc current, and welding
voltage on bead width, and to develop a new
approach involving the use of neural network
and multiple regression methods in the
prediction of process parameters on bead width
for GMA welding process, and to finally assist
guidance in selecting suitable welding
conditions for particular tasks.

2. Experimental Work

A number of problems related to the robotic
GMA welding process include the modeling,
sensing and control of the process. Statistically
designed experiments that are based upon
factorial techniques, reduce costs and give the
required information about the main and
interaction effects on the response factors.
Experiments were designed for developing a
new model independently
controllable process parameters. The process

to correlate

parameters included in this study were three
levels of wire diameters (0.9, 1.2 and 1.6 mm),
three levels of gas flow rate (6, 10 and 14
liter), three levels of welding speed (250, 330
and 410 mm/min) and three levels of welding
voltage (20, 25 and 30 V). The arc current
levels selected for 0.9 mm wire diameter were
90, 190 and 250 A, whereas the levels for 1.2
and 1.6 mm wire diameters were 180, 260 and
360 A. All other parameters except these
pafameters under consideration were fixed.

KB Bask #1848 43, 20004 81

Fig. 1 identifies the major input and output
parameters associated with the quality
characteristics of a GMA welding process.

IE,J> Bead width
M| 6)
process Bead height
O

Fig. 1 Input and output parameters.of the GMA
welding process
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The experimental materials was AS 1204
mild steel with chemical composition of C
0.25%, Si 0.4%, P 0.04% and Cu 0.05%. Steel
wires with diameters of 0.9, 1.2 and 1.6 mm
which have composition of C 0.5%, Mn 1.00-
1.50%, Si 0.60-0.85%, S 0.035% max, P
0.025% max and Cu 0.55% max were
employed as the welding consumables. The
selection of the welding electrode wire was
based principally upon matching the
mechanical properties and physic. The welding
facility was chosen as the basis for the data
collection and evaluation. Experimental test
plates were located in the fixture jig by the
robot controller and the required weld
conditions were fed for the particular weld
steps in the robot path, With welder and argon
shield gas turned on, the robot was initialized
and welding was executed.

This continued until the predetermined-
fractional-factorial-experimental runs were
completed. To measure the bead width, the
transverse sections of each weld were cut using
a power hacksaw from the mid-length position
of welds, and the end faces were machined.
Specimen end faces were polished and etched
using a 2.5% nital solution to display bead
width. The schematic diagrams of bead width
employed were made using a metallurgical
microscope interfaced with an image analysis
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system. Images are represented by a 256 level
Gray scale, and the program” can be employed
to identify bead width. The fractional factorial
matrix was assumed to link the mean values of
the measured results with changes in the five
process parameters for determining bead
width. The experimental results were analyzed
on the basis of relationship between process
parameters and bead width of the GMA
welding process.

3. Result and Discussion

3.1 The Neural Network Model

Neural networks have been widely used as a
toll to approximate the “true’ relationships
between process parameters and bead width for
GMA welding without imposing any restriction
on the parameter space of the model. In other
words, a neural network has its fully flexible
function that approximation abilities produce a
mapping between inputs and outputs, while
eliminating a priori non-sample restrictions
which are so commonly used to facilitate
estimation,

Let us consider the neural network model
shown in Fig. 2. Units in the input layer have
a linear activation function. The activation rule
for a unit in the hidden layer and the output
layer is a non-linear monotonic function of the
weighted sum of its input. x;, as follows:

Yy, =f (X wex - q) 1)

where y; is the j-the output value, wji are the
weights of connections, and qj is a bias.
We used a sigmoidal form for the activation

function;
fx)=1/(1-¢) )
The neural network works as a

multidimensional non-linear function as a
whole, which can be trained to approximate
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Fig. 2 Optimal neural network architecture for
predicting bead width

the desired input-output mapping by learning
from a set of examples. Backpropagation,
which is a kind of gradient-descent method, is
widely employed as a learning procedure. The
procedure repeatedly adjusts the weight of the
connections in the network to minimize a
measure of the difference between the actual
output vector of the network and the desired
output vector.

This difference measure E is defined as

i

2|

E Z Z (yj,c-dj;c)z (3)
)

where subscript ¢ is an index over cases
(input=output pairs), j is an index over output
units, and d; is the desired output value for y;.
Each weight is changed by the following rule;

AW:-na—E— 4)

2%

where 7 is the learning rate.
We used the following rule for accelerating the
convergence:

oF

Adw(n)=-n ) +adwn-1) 5

IW(r
where subscript n indexes the presentation
number, and o is a constant which determines
the contribution of the past weight change to
current weight change.
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The neural networks were then trained and
tested against the bidding examples. 81
samples were used for training, while 36
samples were employed for testing. The
training process was a lengthy process
conducted on a UNIX SUN workstation. With a
learning rate of 0.6 and a momentum term of
0.9, the network was trained for 200,000
iterations. During the training process,
connection weights increased and decreased as
a neural network settled down to a stable
cluster of mutually excitatory nodes.

To ensure the accuracy of the neural network
model and to survey the spread of the values,
Fig. 3 was produced for experimental versus
theoretical results using the developed neural
network model. The line of best fit using the
plotted points was drawn using regression
computation. Fig. 3 shows a plot of the
measured bead width versus the calculated
values obtained using the neural network
model. It is evident from these results that the
neural network model yields more accurate
bead width,

20

15T
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Measured bead width(mm)

5 . . A ; . . .
5 7 9 11 13 15 17 19 21
Calculated bead width(mm)

Fig. 3 Comparison of measured and calculated
bead width using a neural network

3.2 Development of Mathematical Models

3.2.1 First order model

Suppose that the response variable R can be
predicted by linear combination of independent
variables such as wire diameter, gas flow rate,
welding speed, welding voltage and arc current
as follows,

R=kgtk, - Dk, - G+k, - Stk, - Itk - V 6)

REBISHAETE H18% 498, 20004 81

where R= measure bead width(mm)
D = wire diameter
G = gas flow rate
= welding speed
I = arc current
V = welding voltage
ko kyy kyy oy iy ks, = coefficients to be
estimated

Eq.(7) may be represented by the following
general statistical form:

Y=, X, + by X, + Ky X, 4 Ky iy + Ky, + s X Q)

where b’'s = estimated k parameter
X = the unit column vector
Xp X1 X, Xy X, and x, = wire diameter, gas
flow rate, welding
speed, arc current and welding voltage
respectively.

All b parameters can be calculated by method
of least squares where the basic formula is
given as follow:

b=(XX"'X"y @

where b = the column vector of the estimated

parameters :

by, by, by, by, by, by

X = the calculation matrix

X" = the transposition of X

X'X = the variance matrix

¥ = the column vector of the measured
response(bead width)

These analyses were carried out with the help
of a standard statistical package program,
SAS, using an IBM compatible PC"”. Based on
the regression analysis using least square from
experimental results(bead width), the following
equations can be estimated:

W =-2.3053+3.513D-0.0035G-0.0179S
+0.02131+0.4331V ©

464



52

9% - £24 93 - H8F - 494

3.2.2 Exponential model

Suppose that the relationship between bead
width as a dependent parameter and process
parameters including wire diameter, gas flow
rate, welding speed, arc current and welding
voltage as independent parameters can be
expressed by following equation,

R=c¢, DA G2 S VS (10
This equation can be written as,
InR=ln cqre.InD+c,InGrenS+c Inl+cnV (11)

Thus, the above equation can be expressed by
the following linear mathematical form,

n=Bxo+ Bixi+ Box,+ Buxy+ Bx,+ Box 12)

where n = the logarithmic value of the

experimentally measured response
(bead width)

Bo. Bi, B Bs. Bi, Ps = constant to be

estimated

X = unit column vector

Xy, X2, X3, X, X5 = logarithmic values of

wire diameter, gas floe rate, welding

speed, arc current and welding voltage.

The procedure used for obtaining the predictive
equation for bead width is shown below for the
equations:

D0.3647 10.4151 VO.%73

W= "gwm g (13)

To check the adequacy of the mathematical
models, the standard error of estimate,
coefficient of multiple correlation and
coefficient of determination for the equations
(9) and (13) are given in Table 1 which
indicates that the value of coefficient of
multiple correlation of equation (13) is higher
than those of equations (9), but all equations
are equally useful for prediction of bead width
due to small differences. To ensure the
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Table 1 Analysis of variance tests for mathematical
models for bead width

Standard | Coefficient | Coefficient of
No. of . ..
equation error of of multiple | determination
duatio estimate | correlation (%)
9 0.832 0.9697 94.04
13 0.712 0.9810 96.24

accuracy of the developed equations and to
survey the spread of the values, two graphs
(Figs. 4 to 5) were produced for experimental
versus theoretical results using the developed
equations. The line of best fit using the plotted
points drawn using regression
computation. Fig. 4 shows a plot of the
measured bead width versus the calculated

was

values obtained using exponential model,
whereas Fig. 5 presents a plot of the measured
bead width versus the calculated values
obtained using linear equation. It is evident
from these results that the mathematical
models yields more accurate bead width.
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Fig. 4 Comparison of measured and calculated
bead width using curvilinear equation
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Fig. 5 Comparison of measured and calculated
bead width using linear equation
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3.3 Selecting the Most Accurate Model

In order to analysis the accuracy of all the
developed bead width model based on a neural
network and two empirical models, additional
experiments ware carried out. Table 2 showed
Process parameters and measured results for
the additional experiment. All the predictive
equations developed have been compared with
their corresponding experimental results, The
experimental results and welding conditions
including wire diameter, gas flow rate, welding
speed, arc current and welding voltage are
employed as the input parameter. Output
parameter is the bead width calculated by each
model and the corresponding errors of
prediction. To choose the most accurate
algorithm, the predicted results from the
established models are plotted in Fig. 6
together with the experimental results as listed
in Table 2. As can be seen from Table 2 and
Fig. 6, the neural network mode] gives the best
fit to the experimental results and produced
better prediction of the bead width than the
developed empirical equations. The conclusion
from the results of this analysis for the
experiment runs show that theoretical results
may predict the experiment values with any
consistent accuracy.

4. Conclusions

The effects of process parameters on bead
width have been studied when bead-on-plate
welds are deposited using the robotic GMA
welding process, and the following conclusions
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Fig. 6 Comparison of measured and calculation
bead width using neural network and
multiple regression method

1. Process parameters such as wire diameter,
gas flow rate, welding speed, arc current and
welding voltage influence the bead width for
GMA welding process.

2. A neural network model and two regression
equations(linear and exponential)

developed from the experimental data in the
course of this work can be employed to conduct
a systematic study on the efficient algorithm as
well as to control the process parameters in
order to achieve the desired bead width,
Neural network models are capable of making
bead width prediction of the experimental
values with reasonable accuracy.

3. The methodology presented in this paper
provides an efficient algorithm to establish a
general predictive bead width equations to
cover the effects of different welding method
and work materials. By efficient here, it means
that once a the developed model has been
determined, the effort for including a new
welding method or work materials is only to
conduct a typical set of experiments which is
much less than establishing a new equation for

reached. this particular welding method or work
material.
Table 2 Process parameters and results for the additional experiment
Trial. No. | Wire diameter | Gas flow rate | Welding speed | Welding current | Arc voltage Bead width
1 0.9 6 250 190 30 12.91
2 1.2 6 330 180 25 11.46
3 1.2 10 330 260 30 14.41
4 1.6 10 410 180 25 11.17
5 1.6 14 410 260 30 14.25
RERAHEEEE B184% $45, 20004 81 466
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