Warning: fopen(/home/virtual/kwjs/journal/upload/ip_log/ip_log_2025-11.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 100 Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 101 Effects of Amorphous Phase Fraction on the Scratch Response of NiTiZrSiSn Bulk Meatllic Glass in the Kinetic Spraying Process

Journal of KWJS 2007;25(3):28-36.
Published online July 19, 2007.
저온분사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅의 비정질 분율에 따른 스크래치 반응
, ,
 
Effects of Amorphous Phase Fraction on the Scratch Response of NiTiZrSiSn Bulk Meatllic Glass in the Kinetic Spraying Process
Sanghoon Yoon, Sooki Kim, Changhee Lee
Abstract
  A bulk amorphous NiTiZrSiSn powder produced using an inert gas atomization was sprayed by kinetic spraying process that is basically a solid-state deposition process onto a mild steel substrate. They were successfully overlaid onto the mild steel substrate. In order to evaluate the tribological behavior of the kinetic sprayed NiTiZrSiSn BMG (Bulk Metallic Glass) coatings, a partially crystallized coating and a fully crystallized coating were prepared by the isothermal heat treatments. Tribological behaviors were investigated in view of friction coefficient, hardness and amorphous phase fraction of coating layer. Surface morphologies and depth in the wear tracks were observed and measured by scanning electron microscope and alpha-step. From the examination of the scratch wear track microstructure, transition from the ductile like deformation (micro cutting) to the brittle deformation (micro fracturing) in the scratch groove was observed with the increase of the crystallinity.
Key Words: Amorphous, Kinetic spray coating, Crystallinity, Scratch test


ABOUT
BROWSE ARTICLES
ARTICLE CATEGORY 
FOR CONTRIBUTORS
Editorial Office
#304, San-Jeong Building, 23, Gukhoe-daero 66-gil, Yeongdeungpo-gu, Seoul 07237, Korea
Tel: +82-2-538-6511    Fax: +82-2-538-6510    E-mail: koweld@kwjs.or.kr                

Copyright © 2025 by The Korean Welding and Joining Society.

Developed in M2PI