5. S. Tilahun, M. Vijayakumar, C. R. Kannan, S. Manivannan, J. Vairamuthu, and K. P. M. Kumar, A review on ultrasonic welding of various materials and their mechanical properties,
IOP Conf. Ser.:Mater. Sci. Eng. 988 (2020) 012113.
https://doi.org/10.1088/1757-899X/988/1/012113
[CROSSREF]
6. F. Dausinger, Laser welding of aluminum alloys:from fundamental investigation to industrial application,
Proceedings of Advanced High-Power Lasers and Applications. Osaka, Japan(1999) 367–379.
https://doi.org/10.1117/12.377044
[CROSSREF]
10. V. S. M. Ramakrishna, R. P. H. S. L. R. Amrutha, R. A. Rahman Rashid, and S. Palanisamy, Narrow gap laser welding (NGLW) of structural steels-a technological review and future research recommendations,
Int. J. Adv. Manuf. Technol. 111 (2020) 2277–2300.
https://doi.org/10.1007/s00170-020-06230-9
[CROSSREF]
11. R. A. Ribeiro, P. D. C. Assunção, E. B. F. Dos Santos, A. A. C. Filho, E. M. Braga, and A. P. Gerlich, Application of cold wire gas metal arc welding for narrow gap welding (NGW) of high strength low alloy steel,
Materials. 12(3) (2019) 335.
https://doi.org/10.3390/ma12030335
[CROSSREF] [PUBMED] [PMC]
15. K. H. Kim, H. S. Bang, H. S. Bang, A. F. H. Kaplan, J. Näsström, and J. Frostevarg, Hot Wire Laser Welding of Multilayer for Narrow Gap Analysis of Wire Melting/Transfer and Arc Formation Phenomenon by High Speed Imaging -,
J. Weld. Join. 34(5) (2016) 26–32.
http://dx.doi.org/10.5781/JWJ.2016.34.5.26
[CROSSREF]
18. A. Gateja, M. Kogel-Hollachera, D. Blázquez-Sáncheza, A. Bobrowskia, A. Nietea, N. Blundellc, and K. Withersc, 3D-capable Coaxial Laser Brazing Head, Proceedings of Lasers in Manufacturing Conference 2015. München, Germany(2015)
20. S. A. Shevchik, C. Kenel, C. Leinenbach, and K. Wasmer, Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks,
Addit. Manuf. 21 (2018) 598–604.
https://doi.org/10.1016/j.addma.2017.11.012
[CROSSREF]
23. A. Chabot, M. Rauch, and J. Y. Hascoët, Novel control model of Contact-Tip-to-Work Distance (CTWD) for sound monitoring of arc-based DED processes based on spectral analysis,
In.t J. Adv. Manuf. Technol. 116 (2021) 3463–3472.
https://doi.org/10.1007/s00170-021-07621-2
[CROSSREF]
25. J. J. Valdiande, M. Martínez-Minchero, A. Cobo, J. M. Lopez-Higuera, and J. Mirapeix, On-line monitoring and defect detection of arc-welding via plasma optical spectroscopy and LIBS,
Spectrochim. Acta, Part B. 194 (2022) 106474.
https://doi.org/10.1016/j.sab.2022.106474
[CROSSREF]
26. Y. Huang, Y. Yuan, L. Yang, D. Wu, and S. Chen, Real- time monitoring and control of porosity defects during arc welding of aluminum alloys,
J. Mater. Process. Technol. 286 (2020) 116832
[CROSSREF]
27. U. Sreedhar, C. V. Krishnamurthy, K. Balasubramaniam, V. D. Raghupathy, and S. Ravisankar, Automatic defect identification using thermal image analysis for online weld quality monitoring,
Journal of Materials Processing Technology. 212(7) (2012) 1557–1566.
https://doi.org/10.1016/j.jmatprotec.2020.116832
[CROSSREF]
28. M. Khanzadeh, S. Chowdhury, L. Bian, and M. A. Tschopp, A methodology for predicting porosity from thermal imaging of melt pools in additive manufacturing thin wall sections,
Proceedings of ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. California, Usa(2017) 4–8.
https://doi.org/10.1115/MSEC2017-2909
[CROSSREF]
29. R. Xiao, Y. Xu, Z. Hou, C. Chen, and S. Chen, An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding,
Sens. Actuators, A. 297 (2019) 111533.
https://doi.org/10.1016/j.sna.2019.111533
[CROSSREF]
34. C. Doumanidis and Y. M. Kwak, Geometry modeling and control by infrared and laser sensing in thermal manufacturing with material deposition,
J. Manuf. Sci. Eng. 123(1) (2001) 45–52.
https://doi.org/10.1115/1.1344898
[CROSSREF]
39. T. Kunimitsu, S. Katayama, and A. Matsunawa, Observation of filler wire melting dynamics during CO2 laser welding of aluminum alloys and evaluation of weldability,
Quarter. J. Japan Weld. Soc. 20(2) (2002) 220–227.
https://doi.org/10.2207/qjjws.20.220
[CROSSREF]
40. W. Tao, Z. Yang, Y. Chen, L. Li, Z. Jiang, and Y. Zhang, Double-sided fiber laser beam welding process of T-joints for aluminum aircraft fuselage panels:Filler wire melting behavior, process stability, and their effects on porosity defects,
Opt. Laser Technol. 52 (2013) 1–9.
https://doi.org/10.1016/j.optlastec.2013.04.003
[CROSSREF]
42. H. Chauhan, N. Chauhan, and P. T. Trivedi, A Review on an Effect of Process Parameters on Mechanical and Metallurgical Properties of Aluminium Weld Joints using Gas Metal Arc Welding (GMAW) Process, Int. J. Sci. Res. Develop. 2(10) (2014)
44. A. Scotti, C. O. Morais, and L. O. Vilarinho, The effect of out-of-phase pulsing on metal transfer in twin-wire GMA welding at high current level, Eng. Mater.Sci.Weld. J. 85(10) (2006) 225–230.
45. P. Zhai, S. Xue, J. Wang, W. Chen, T. Chen, and S. Ji, Effects of arc length adjustment on weld bead formation and droplet transfer in pulsed GMAW based on datum current time,
Metals. 10(5) (2020) 665.
https://doi.org/10.3390/met10050665
[CROSSREF]
46. A. S. Salminen, The filler wire-laser beam interaction during laser welding with low alloyed steel filler wire, Mechanika. 4(84) (2010) 67–74.
48. J. H. Shin, S. H. Lee, and M. J. Kang, Effects of Welding Parameters on Droplet Transfer and Bead Geometry in Laser Welding with Aluminum and Stainless Steel Filler Wires,
J. Weld. Join. 41(5) (2023) 342–348.
https://doi.org/10.5781/JWJ.2023.41.5.4
[CROSSREF]
50. R. Hu, M. Luo, T. Liu, L. Liang, A. G. Huang, D. Trushnikov, K. P. Karunakaran, and S. Pang, Thermal fluid dynamics of liquid bridge transfer in laser wire deposition 3D printing,
Sci. Technol. Weld. Join. 24(4) (2019) 1–11.
https://doi.org/10.1080/13621718.2019.1591039
[CROSSREF]
53. Y. Yu, W. Huang, G. Wang, J. Wang, X. Meng, C. Wang, F. Yan, X. Hu, and S. Yu, Investigation of melting dynamics of filler wire during wire feed laser welding,
J. Mechan. Sci. Technol. 27 (2013) 1097–1108.
https://doi.org/10.1007/s12206-013-0218-4
[CROSSREF]
59. S. Takushima, N. Shinohara, D. Morita, H. Kawano, Y. Mizutani, and Y. Takaya, In-Process Height Displacement Measurement Using Crossed Line Beams for Process Control of Laser Wire Deposition,
Int. J. Auto. Technol. 15(5) (2021) 715–727.
https://doi.org/10.20965/ijat.2021.p0715
[CROSSREF]
62. E. W. Teichmann, J. Kelbassa, A. Gasser, S. Tarner, and J. H. Schleifenbaum, Effect of wire feeder force control on laser metal deposition process using coaxial laser head,
J. Laser Appl. 33 (2021) 012041.
https://doi.org/10.2351/7.0000304
[CROSSREF]
63. C. J. Bernauer, A. Zapata, L. Kick, T. Weiss, M. E. Sigl, and M. F. Zaeh, Pyrometry-based closed-loop control of the melt pool temperature in Laser Metal Deposition with coaxial wire feeding,
Procedia CIRP. 111 (2022) 296–301.
https://doi.org/10.1016/j.procir.2022.08.025
[CROSSREF]
65. B. T. Gibson, Y. K. Bandari, B. S. Richardson, W. C. Henry, E. J. Vetland, T. W. Sundermann, and L. J. Love, Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V,
Addit. Manuf. 32 (2020) 100993.
https://doi.org/10.1016/j.addma.2019.100993
[CROSSREF]
66. M. R. Dehaghani, A. Sahraeidolatkhaneh, M. Nilsen, F. Sikström, P. Sajadi, Y. Tang, and G. G. Wang, System identification and closed-loop control of laser hot-wire directed energy deposition using the parameter-signature-quality modeling scheme,
J. Manuf. Process. 112 (2024) 1–13.
https://doi.org/10.1016/j.jmapro.2024.01.029
[CROSSREF]
67. Z. Li, B. Chang, J. Wang, H. Zhang, Z. Liang, Z. Liao, L. Wang, C. Liu, and D. Du, Dual-droplet transition control for improving forming quality and composition homogenizing in dual-wire additive manufacturing of Ti2AlNb alloy,
Int. J. Mach. Tools Manuf. 195(A) (2024) 104114.
https://doi.org/10.1016/j.ijmachtools.2023.104114
[CROSSREF]
68. Z. Li, B. Chang, K. Wang, H. Zhang, Z. Liang, L. Wang, C. Liu, and D. Du, Closed-loop control of alternating dual-electron beams for molten pool regulation during in-situ additive manufacturing,
J. Mater. Process. Technol. 319 (2023) 118087.
https://doi.org/10.1016/j.jmatprotec.2023.118087
[CROSSREF]
69. Z. Liang, Z. Liao, H. Zhang, Z. Li, L. Wang, B. Chang, and D. Du, Improving process stability of electron beam directed energy deposition by closed-loop control of molten pool,
Addit. Manuf. 72 (2023) 103638.
https://doi.org/10.1016/j.addma.2023.103638
[CROSSREF]
70. Z. Liang, Z. Liao, H. Zhang, Z. Li, L. Wang, B. Chang, and D. Du, Maintaining a proper droplet transfer state in electron beam directed energy deposition via absorbed current-sensed control,
J. Manuf. Processes. 109 (2024) 407–420.
https://doi.org/10.1016/j.jmapro.2023.12.058
[CROSSREF]
76. S. Z. Hussain, Z. Kausar, Z. U. Koreshi, S. R. Sheikh, H. Z. U. Rehman, H. Yaqoob, M. F. Shah, A. Abdullah, and F. Sher, Feedback control of melt pool area in selective laser melting additive manufacturing process,
Processes. 9(9) (2021) 1547.
https://doi.org/10.3390/pr9091547
[CROSSREF]