Warning: fopen(/home/virtual/kwjs/journal/upload/ip_log/ip_log_2025-01.txt): failed to open stream: Permission denied in /home/virtual/lib/view_data.php on line 100 Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 101 A Study on Optimal Welding Variables for Horizontal Fillet Welding Using Twin-Flux-Cored-Wires by Taguchi Method Combined with Grey Relational Analysis

J Weld Join > Volume 42(6); 2024 > Article
그레이 관계법과 다구찌법을 적용한 쌍전극 FCA 용접의 수평 필렛 용접 조건 최적화에 관한 연구

Abstract

The twin-wire welding process consuming the flux-cored wires as the filler material, namely TW-FCAW, was demonstrated to the fillet welding in the horizontal position. To determine the optimal welding variables that are most suitable for the multiple quality characteristics defined by the fillet weld sizes, the Taguchi method combined with the grey relational analysis was introduced into analyzing the experimental results from a test set of orthogonal arrays. Weld sizes, instead of macro-sectional observations, were calculated from the three-dimensional surface model generated from the point cloud survey of the fillet weld by the laser scanning technique. A set of optimal welding variables for TW-FCAW was drawn from the analysis of the signal-to-noise ratio calculated by the Taguchi method combined with the grey relational analysis. Fillet welding in the horizontal position was feasible under faster welding speed and higher welding current by TW-FCAW than the conventional single-wire welding process. A welding test conducted under the optimal condition for TW-FCAW revealed that a nearly equilateral fillet weld with a relevant throat thickness on demand is attainable in good agreement with the predicted quality.

1. 서 론

국내에서 건조되는 선박의 소부재에 대한 필렛 용접에는 일반적으로 단전극(single wire)의 플럭스 코어드 와이어(flux-cored wire)를 사용한 자동 또는 반자동 용접 공정이 적용되고 있다. 최근 선박 건조의 생산성 향상과 숙련 용접사 감소에 대응하기 위하여 선박 소부재의 생산에 용접 로봇 시스템을 도입하는 사례가 늘어나고 있다1). 또한 자동용접 생산성을 높이기 위해 다전극(multiple wire)을 사용한 고속 용접법의 적용도 확대되고 있다2,3). 다전극 용접 공정에서는 한 개 이상의 용접기에 연결된 다수의 소모성 전극이 동시에 용융된다. 두 개의 소모성 전극을 적용하는 경우, 일반적으로 전극당 개별 용접기를 적용하는 탠덤(tandem) 용접 공정과 두 개의 전극이 동시에 하나의 용접기를 공용하는 쌍전극(twin-wire) 용접 공정으로 나뉜다4). 개별 전원 특성이 다르고 전원간 제어가 매우 복잡한 탠덤 용접 공정에 비해 쌍전극 용접 공정은 용접 중 조작이 상대적으로 간단하다고 알려져 있다5). Carney 등6)은 탠덤과 쌍전극 GMA 용접 공정에 대해 검토한 결과 단전극 GMA 용접 공정보다 생산성이 향상됨을 확인하였다. 특히 쌍전극 GMA 용접 공정은 탠덤 공정에 비해 CTWD의 변화에 상대적으로 둔감하며, 와이어 배열 방향에 따른 용착성능의 변화가 거의 없는 전방향성 용착(omni-directional deposition)이 가능하여 로봇을 이용한 자동용접에 상대적으로 더 적합하다고 보고하였다. 한편 Chen과 Wu7)는 CO2를 보호가스로 사용한 쌍전극 GMA 용접 공정에서 아크 길이가 필렛 용접부 품질과 용적 이행에 미치는 영향에 대해 보고하였다. 용적 이행은 아크 길이가 길수록 단락에서 스프레이 이행으로 바뀌어 안정적인 용적 이행이 어렵고 스패터의 발생량도 증가하며, 용접부 외관 품질도 나빠진다고 하였다. 반면 아크 길이에 따른 필렛 용접부 외관 품질과 용적 이행에 대해 Chen과 Wu와 상반된 연구 결과도 보고되었다8).
최적 용접 조건의 결정 방법에 관한 연구로서, Choi와 Kang 등9)은 다구찌법을 적용하여 두께 4.0mm인 5083-O Al 합금의 T-형상 필렛 용접부에 대한 GMA 용접의 최적 용접 조건을 결정하였다. 다구찌법에 따른 품질특성치(quality characteristics)는 상하 용입깊이, 각장, 목두께였으며, 와이어 송급속도, 극성 비, 티칭 옵셋을 제어인자로 취하였다. 용접 중 계량화가 어려운 루트 간극은 잡음인자로 배치하였다. 직교배열에 따른 시험순번별 네 가지 품질특성치를 특성치별 최대값과 최소값을 사용하여 무차원화하고 산술 합산한 다음 각 시험순번의 용접 입열량으로 나눈 비를 품질 목표값으로 정의하고 각기 다른 루트 간극에 따라 계산하였다. 이렇게 계산된 품질 목표값에 대한 신호 대 잡음 비를 분석하여 최적 용접 조건을 결정하였다. 한편 다수의 다차원 품질특성치를 고려한 최적화 분석 방법의 하나로 그레이 관계법(grey relational analysis, GRA)을 가미한 다구찌법이 제조공학 분야에서 널리 적용되고 있다10). Esme 등11)은 TIG 용접에 의한 두께 1.2mm의 304 스테인리스강 맞대기 용접부의 형상과 인장강도 최적화를 위해 GRA를 가미한 다구찌법을 적용하였다. Lin과 Yan12)은 6061-T651 Al 합금의 GMA 용접에 대한 최적 조건을 결정하기 위해 비드 폭, 비드 폭과 용입 깊이의 비, 용융 면적을 품질특성치로 고려하고 GRA를 가미한 다구찌법을 적용하였다. Ogbonna와 Fatoba 등13)은 GRA를 가미한 다구찌법을 적용하여 연강과 스테인리스강 간의 이종 용접부의 인장강도와 항복강도, 연신률 및 경도에 최적인 GMA 용접 조건을 결정하였다.
지금까지 보고된 쌍전극 용접 공정에 관한 연구는 솔리드 와이어를 사용한 GMA 용접 공정이 대다수이고, 플럭스 코어드 와이어를 적용한 필렛 용접 공정의 최적 용접 조건에 관한 연구는 거의 없는 실정이다. 본 연구에서는 선급용 강을 모재로 한 필렛 용접부에 대해 소모성 쌍전극으로 플럭스 코어드 와이어를 적용한 FCA 용접 (이하 TW-FCAW) 공정의 수평 필렛 용접에 대한 최적 용접 조건에 대해 검토하였다. 또한 다수의 품질특성치에 최적인 용접 조건을 결정하기 위해 직교배열에 따른 용접 실험을 행하고 GRA를 가미한 다구찌법을 적용하여 실험 결과를 분석하였다.

2. 실험방법

2.1 재료 및 용접방법

Fig. 1은 TW-FCAW를 적용한 수평 필렛 용접용 시험편의 형상과 치수를 나타내고 있다. 시험편의 수평 판과 수직 판은 두께가 각각 15mm, 12mm인 선급용 AH32 강재였다. 임시 방청을 위한 샵 프라이머가 15~30㎛ 두께로 도포된 수평 판과 수직 판을 서로 직각으로 맞추고 최대한 간극이 없는 상태에서 가용접한 후 용접하였다. 용접 중 용접변형을 최소화하기 위해 C형 조임틀을 사용하여 시험편 양 단의 수직 판을 구속하였다.
Fig. 1
Dimension of fillet-welded specimens (mm)
jwj-42-6-606-g001.jpg
TW-FCAW 실험에 적용한 용접재료는 AWS A5.20 E71T-1C 계열의 지름 1.2mm인 전자세 용접용 플럭스 코어드 와이어였으며, Table 1은 용접재료의 화학적 조성과 기계적 성질의 대푯값을 보여주고 있다14).
Table 1
Chemical compositions and mechanical properties of the flux-cored wire
Chemical compositions (wt. %)
C Si Mn P S
0.05 0.51 1.26 < 0.01 < 0.01
Mechanical properties
Y. S., MPa T. S., MPa El., % Impact, J-20°C
545 572 28 70
Fig. 2는 TW-FCAW 실험에 적용한 자동용접 설비인 용접 로봇과 와이어 송급장치 및 쌍전극용 용접 토치를 보이고 있다. 쌍전극 용접 공정을 구현하기 위해 상용의 와이어 송급장치와 용접 토치, 콘택트 팁을 사용하였다. 로봇 기구부 하단의 양쪽에 배치된 두 와이어가 송급장치를 통해 같은 속도로 동시에 용접 토치로 공급되어 단일의 아크 기둥 하에서 용융이 일어난다.
Fig. 2
Welding robot system
jwj-42-6-606-g002.jpg

2.2 다구찌법에 따른 직교배열 실험계획

수평 필렛 용접부에 대한 TW-FCAW의 최적 용접 공정 변수를 도출하기 위하여 용접 시험에 적용할 제어인자와 제어인자별 수준을 Table 2와 같이 설계하였다. 제어인자로 선정한 8개의 자동 용접 공정 변수는 용접속도(WS), 전류(WC), 전압(WV), 그리고 Fig. 3(a)(b)에 도식적으로 나타낸 토치각도(TA)와 토치 진행각도(BA), 와이어 지향점 이격량인 티칭 옵셋(TO), Fig. 3(c)에 나타낸 위빙진폭(WM) 및 위빙각도(WA)였다. 제어인자별 수준값은 예비실험 과정에서 용접결함이 발생하지 않는 범위로 한정하였다.
Table 2
Test level of control variables for TW-FCAW
Control variables Values by levels
L 1 L 2 L 3
Backward angle, deg. BA 5 10 -
Welding speed, cm/min WS 60 70 80
Welding current, ampere WC 400 450 500
Welding voltage, volt WV 32 34 36
Teaching offset, mm TO -0.5 0.0 +0.5
Torch angle, deg. TA 41 43 45
Weaving amplitude, mm WM 1.0 1.2 1.4
Weaving angel. deg WA 0 5 10
정전압의 직류 역극성(DCRP)인 전원특성으로 용접속도를 60, 70, 80cpm, 용접전류를 400, 450, 500A, 용접전압을 32, 34, 36V로 각각 3 수준으로 배치하였다. 토치 진행각도는 후진법으로 2 수준으로 배치하였다. 용접 토치가 수직 판과 이루는 각도로 정의된 토치각도를 41, 43, 45°, 옵셋량을 -0.5, 0.0, +0.5mm, 위빙진폭을 1.0, 1.2, 1.4mm, 위빙각도를 0, 5, 10°로 각각 3 수준 변화로 배치하였다.
Fig. 3
Schematic illustration of control variables
jwj-42-6-606-g003.jpg
Table 3Table 2에 나타낸 2 수준 및 3 수준의 제어인자로 구성된 총 18행의 직교배열 시험 계획을 다구찌법에 따라 설계한 것이며 표의 시험순번에 따라 TW-FCAW 시험을 행하였다.
Table 3
Orthogonal array of control variables for TWFCAW according to Taguchi method
Test No. Level of control variables
BA WS WC WV TO TA WM WA
1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2
10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1
Table 4Table 3에 나타낸 직교배열 시험 중 일정 하게 적용한 용접 변수를 나타내고 있다. 서로 4mm 떨어진 두 와이어의 돌출길이를 25mm로 일정하게 유지하여 용접선 방향과 평행하게 배열한 상태로 용접하였으며, 용접 시 주어진 위빙 주파수는 3Hz, 위빙 골에서의 정지시간은 0.1초로 고정하였다.
Table 4
Constant welding variable for TW-FCAW
Welding variables Constant value
Stick-out (mm) 25.0
wire distance (mm) 4.0
Wire array to the welding direction Parallel
Weaving frequency (Hz) 3.0
Weaving dwell time (second) 0.1

2.3 용접부 치수측정 및 품질특성치

직교배열 시험을 통해 TW-FCAW의 최적 용접 공정 변수를 결정하기 위해 고려한 품질특성치는 필렛 용접부의 공칭 목두께(nominal throat thickness, t), 상하 각장(leg length, su, sd) 및 볼록 또는 오목 형상 높이(R)로부터 주어지며, 볼록 형상과 오목 형상의 용접부에 대한 치수 정의는 Fig. 4와 같다. 용접시험에서 얻어진 용접부의 용접선 방향 중간 점(x=300mm) 및 중간 점에서 좌우로 100mm씩 떨어진 점(x= 200mm 및 400mm)에서 자른 세 개 단면에 대해 t, su, sd와 R을 각각 구하고 아래 식 (1) ~ (3)에 따른 세 개의 품질특성치를 측정 단면별로 계산하였다.
목두께 편차;
(1)
Δt=|tt0|;t0=목두께  목표값
각장 편차;
(2)
Δs=|susd|
비드 오목도/볼록도:
(3)
R=|오목깊이 또는 볼록높이|
Fig. 4
Definition of fillet weld sizes
jwj-42-6-606-g004.jpg
필렛 용접부 치수는 Fig. 5에 보인 휴대형 레이저 스캐너(hand-held laser scanner)를 이용한 용접부 표면의 비접촉 삼차원 측정을 통해 구하였다. 레이저 스캐너로 얻어진 용접부 표면 형상의 원시 점군(raw point cloud)을 후처리와 역설계를 거쳐 가시화한 삼차원 표면 모델에서 추출한 측정 단면상에서 용접부 치수를 계산하였다.
Fig. 5
Laser scanner to obtain the surface profile of fillet welds
jwj-42-6-606-g005.jpg

2.4 GRA를 가미한 다구찌법의 정의

식 (1) ~ (3)에 나타낸 용접부 품질특성치가 0에 수렴할수록 용접부는 목표 품질에 근접하게 되므로 다구찌법의 망소특성(the-smaller-the-better)을 갖는다. 단일의 품질특성치에 대해서는 다구찌법에 따른 신호-대-잡음 비(Signal-to-Noise ratio, SNR)를 시험 조건별로 계산하여 최적의 공정변수 조합을 도출할 수 있다. 한편 품질특성치가 두 개 이상인 조건에서 공정 변수 간의 조합에 따라 품질특성치 간의 교차 반응이 있는 경우에 다구찌법만으로 최적 공정변수 조합을 도출하는 데 한계가 있다. GRA를 가미한 다구찌법은 직교배열 시험으로 두 개 이상의 다중 품질특성치를 적용한 경우에 대한 최적의 공정변수 조합을 산출하는데 다방면으로 적용되고 있다10). GRA를 가미한 다구찌법을 적용하기 위해 개별 품질특성치를 표준화하게 되며, 망소특성인 품질특성치의 표준화 계수(normalized coefficient)는 식 (4)로 계산된다.
(4)
λij(k)=Max{yij(k)}yij(k)Max{yij(k)}Min{yij(k)}
식 (4)에서 i는 시험순번, k는 품질특성치별 부여 번호, j는 잡음요소에 따른 k번 품질특성치의 측정순번으로서, 표준화 계수 λij(k)는 i 번째 시험순번인 용접부에서 구한 k 품질특성치의 j번째 측정값인 yij(k)의 표준화 계수이고, Max⎨yij(k)⎬와 Min⎨yij(k)⎬는 각각 모든 시험순번에서 측정한 k번 품질특성치의 최댓값과 최솟값이다.
식 (4)로 구한 표준화 계수를 식 (5)에 대입하여 구해진 Δij(k)를 식 (6)에 대입하여 그레이 관계 계수(grey relational coefficient)로 정의되는 Cij(k)를 구한다.
(5)
Δij(k)=|Max{λij(k)}λij(k)|
(6)
Cij(k)=Min{Δij(k)}+δMax{Δij(k)}Δij(k)+δMax{Δij(k)}
식 (5)에서 Max⎨λij(k)⎬는 상기 식 (4)로 계산되는 특성치별 표준화 계수 λij(k)의 최댓값이다. 식 (6)에서 δ는 0≦δ≦1인 값으로 본 연구에서는 0.5로 두었으며, Max⎨Δij(k)⎬ 및 Min⎨Δij(k)⎬는 각각 식 (5)에 따라 계산되는 품질특성치별 Δij(k)의 최댓값과 최솟값이다.
그레이 관계 등급(grey relational grade), Gij는 식 (6)에 따른 Cij(k)를 모든 품질특성치에 대해 평균화한 값으로 아래의 식 (7)로 주어진다.
(7)
Gij=1lk=1lCij(k)
GRA를 가미한 다구찌법에서 SNR은 식 (7)로 계산되는 Gij의 망대(the-larger-the-better) 조건인 식 (8)을 적용하여 계산하였다.
(8)
SNRi=10log(1mj=1m1Gij    2)

3. 결 과

3.1 용접부 치수 및 품질특성치 계산

Fig. 6Table 3의 Test No. 5의 조건으로 용접한 필렛 용접부의 외관 사진이다. 용접은 그림의 오른쪽에서 왼쪽으로 진행되었으며, 가접부를 제외한 용접선의 길이는 약 500mm 내외였다.
Fig. 6
Appearance of the specimen welded by Test No. 5
jwj-42-6-606-g006.jpg
Fig. 7은 Test No. 5 조건을 적용한 용접부의 표면을 레이저 스캐너로 조사하여 얻은 원시 점군을 후처리를 통해 중복점을 제거하고 정합한 후 생성한 삼차원 표면 메쉬 모델을 보이고 있다. 삼차원 표면 모델 구성을 위한 점(node)의 수는 모델별 최소 67,500 ~ 최대 83,600개, 삼각형 메쉬의 수는 모델별 최소 133,300 ~ 최대 163,700개였다.
Fig. 7
Surface mesh model of the specimen welded by Test No. 5
jwj-42-6-606-g007.jpg
Fig. 8은 Test No. 5의 조건을 적용한 용접부의 삼차원 표면 모델의 단면 B 위치에서 추출한 경계선과 용접부의 매크로 단면 형상을 정합한 예이다. 삼차원 표면 모델의 단면 경계선과 매크로 단면 형상이 양호하게 일치하고 있음을 알 수 있다. 삼차원 모델에서 추출한 단면 형상의 수직선과 수평선을 각각 연장하여 찾은 교차점을 기준으로 단면의 품질특성치를 구하기 위한 필렛 용접부 치수를 계산하였다.
Fig. 8
Matching the scanning data with the macro-section of the weld
jwj-42-6-606-g008.jpg
Fig. 9는 삼차원 모델에서 추출한 단면 A, B, C에서 계산한 용접부 치수 분포를 나타내고 있다. Fig. 9(a)에 나타낸 t의 최솟값은 4.18mm, 최댓값은 6.22mm였다. 세 개의 단면에서 측정한 t의 평균값이 가장 큰 경우는 Test No. 3 조건을 적용한 용접부로 6.14mm이며, Test No. 16 조건을 적용한 용접부의 t의 평균값은 4.28mm로 최소였다. Test No. 3은 500A의 용접전류와 60cpm의 용접속도를 적용하여 시험 조건 중 입열량이 가장 큰 경우였으며, Test No. 16은 400A와 80cpm을 적용하여 상대적으로 입열량이 작았다. Test No. 7의 조건을 적용한 용접부에서는 측정 단면별로 t의 편차가 다소 있었으나, 나머지 조건에서는 단면별 t의 편차가 0.5mm 이내였다. Fig. 9(b)에 나타낸 su의 단면 평균값은 대체로 입열량에 정비례하였으나, Fig. 9(c)에 나타낸 sd의 단면 평균값은 입열량과의 상관성이 매우 낮았고 단면간 치수 편차도 컸다. Fig. 9(d)에 나타낸 R은 최소 0.2mm에서 최대 1.38mm였으며, 입열량과의 상관성은 거의 없었다. 세 개 단면에 대한 R 평균값은 선형 필렛이 형성된 Test No. 4와 18의 조건을 적용한 용접부에서 0.66mm로 최소였고, 오목과 볼록이 중첩되어 S 형상의 필렛이 형성된 Test No. 5의 조건을 적용한 용접부에서 1.2mm로 최대였다.
Fig. 9
Weld sizes calculated from the surface model of welded specimens
jwj-42-6-606-g009.jpg
Table 5Fig. 9의 용접부 치수를 이용하여 식 (1) ~ (3)에 따라 계산한 용접부 단면별 품질특성치인 Δt, Δs, R이다. 식 (1)에 따른 Δt를 구할 때 최적 용접 공정변수를 적용한 용접부의 공칭 목두께(t)는 최소한 설계 목두께(td)보다 항상 커야 한다는 기본적인 품질 기준을 달성하기 위해 식 (1)의 목두께 목푯값, t0는 td에 전체 목두께 측정값 분포의 표준편차(σ)를 고려한 아래의 식 (9)로 산정하였다.
(9)
t0=td+2σ
Table 5
Quality characteristics of welded specimens
Test No. Δt, mm Δs, mm R, mm
A B C A B C A B C
1 1.06 1.07 0.91 0.18 0.03 0.78 0.96 0.78 0.89
2 1.22 1.29 1.20 0.31 0.14 1.43 0.71 0.78 0.73
3 1.96 1.96 1.73 1.21 0.84 0.68 0.81 0.62 0.60
4 0.24 0.52 0.48 0.93 1.17 0.65 0.87 0.20 0.94
5 0.94 0.88 1.09 0.03 0.86 0.67 1.12 1.38 1.11
6 1.26 1.17 0.81 1.30 0.74 1.11 0.49 0.87 0.77
7 0.01 0.51 0.11 0.41 0.37 1.40 0.87 0.93 0.96
8 0.41 0.52 0.54 0.18 0.46 0.18 1.20 0.98 1.00
9 1.18 1.25 1.02 0.62 0.88 0.37 1.12 0.60 0.69
10 0.61 0.56 0.72 1.11 1.03 0.50 0.72 1.03 0.68
11 1.34 1.48 1.44 0.18 0.03 1.27 0.87 0.86 0.82
12 1.61 1.70 1.81 1.00 1.72 1.05 0.81 0.98 0.94
13 0.33 0.44 0.42 1.25 0.38 0.41 0.78 0.89 1.09
14 0.92 0.89 0.90 0.85 1.39 1.02 1.19 1.03 0.74
15 1.27 0.98 0.92 1.25 1.03 2.01 0.62 1.08 1.10
16 0.03 0.10 0.08 0.68 0.04 0.49 1.07 1.16 0.75
17 0.57 0.67 0.74 0.15 0.24 0.21 0.97 0.78 0.75
18 1.18 0.99 1.19 0.97 0.85 1.35 0.58 0.89 0.52
식 (9)에서 2σ는 t0에 대해 확률적으로 95%의 신뢰구간을 설정하기 위해 도입하였다. 시험순번별 용접부에서 측정한 t의 표준편차(σ)의 전체 시험 평균값이 0.13mm인 것과 td로 4.0mm를 식 (9)에 대입하면 목두께 목푯값인 t0는 식 (10)과 같다.
(10)
t0=td+2σ=4.0+20.13=4.26
Table 5에 나타낸 시험순번별 품질특성치가 모두 0에 수렴할수록 용접부의 품질이 목표에 가깝게 되므로, 개별 품질특성치의 단면 평균값은 작을수록 좋다. Δt의 세 개 단면 평균값은 Test No. 7과 16 조건을 적용한 용접부에서 작았고, Test No. 3과 12 조건을 적용한 용접부에서 크게 나타났다. Δs의 단면 평균값은 Test No. 8과 17 조건을 적용한 용접부에서 작았고, Test No. 12와 15를 적용한 용접부에서 크게 나타났다. 한편 R의 단면 평균값은 다른 조건과 비교하여 Test No. 5와 8 조건을 적용한 용접부에서 크게 나타났다. 이와 같이 고려하는 품질특성치에 따라 품질 목표에 부합하는 시험조건의 우열이 각기 달라지므로 개별 품질특성치에 대한 분석만으로 최적의 제어인자를 결정하기 어렵다는 것을 유추할 수 있다.

3.2 제어인자 수준별 SNR 분석 결과

Table 6은 식 (6)에 따른 품질특성치별 그레이 관계 계수, Cij(k)를 측정 단면별로 계산한 결과를 보이고 있다. 개별 품질특성치의 최솟값을 갖는 단면의 Cij(k)는 1.0이고 품질특성치가 커질수록 Cij(k)는 상대적으로 작아진다.
Table 6
Gray relational coefficient (Cij(k))
Test No. In terms of Δt In terms of ΔS In terms of R
A B C A B C A B C
1 0.48 0.48 0.52 0.87 1.00 0.57 0.44 0.50 0.46
2 0.45 0.43 0.45 0.78 0.90 0.41 0.54 0.50 0.53
3 0.33 0.33 0.36 0.46 0.55 0.60 0.49 0.58 0.60
4 0.81 0.66 0.67 0.52 0.46 0.61 0.47 1.00 0.44
5 0.51 0.53 0.47 1.00 0.54 0.61 0.39 0.33 0.39
6 0.44 0.46 0.55 0.44 0.58 0.48 0.67 0.47 0.51
7 1.00 0.66 0.91 0.72 0.74 0.42 0.47 0.45 0.44
8 0.71 0.66 0.65 0.87 0.70 0.87 0.37 0.43 0.42
9 0.45 0.44 0.49 0.63 0.54 0.74 0.39 0.60 0.55
10 0.62 0.64 0.58 0.48 0.50 0.68 0.53 0.42 0.55
11 0.42 0.40 0.41 0.87 1.00 0.44 0.47 0.47 0.49
12 0.38 0.37 0.35 0.51 0.37 0.49 0.49 0.43 0.44
13 0.75 0.69 0.70 0.45 0.74 0.72 0.50 0.46 0.40
14 0.52 0.53 0.52 0.55 0.42 0.50 0.37 0.42 0.52
15 0.44 0.50 0.52 0.45 0.50 0.33 0.58 0.40 0.40
16 0.98 0.92 0.93 0.60 0.99 0.68 0.40 0.38 0.52
17 0.64 0.60 0.57 0.89 0.83 0.85 0.43 0.50 0.52
18 0.45 0.50 0.45 0.51 0.55 0.43 0.61 0.46 0.65
Fig. 10Table 6의 결과를 식 (7)과 (8)에 적용하여 계산한 시험순번별 SNR의 변화를 보이고 있다. 망대조건이므로 SNR 값이 클수록 품질 목표에 부합하는 시험조건이 된다. 시험조건 중 Test No. 16을 적용한 용접부의 SNR이 가장 높고, Test No. 12를 적용한 용접부가 가장 낮은 SNR을 나타내었다. Test No. 7, 8, 16, 17의 조건을 적용한 용접부의 SNR이 상대적으로 높은 측에 Test No. 3, 12, 14, 15의 조건을 적용한 용접부의 SNR이 낮은 측에 분포하고 있다.
Fig. 10
Signal-to-Noise ratio by test numbers
jwj-42-6-606-g010.jpg
Table 7은 시험순번별 SNR로부터 계산된 제어인자 수준에 따른 평균 SNR과 평균 SNR의 변동 범위를 나타내고 있다. 용접전류의 수준 변화에 따른 SNR이 가장 크게 변하였고, 옵셋의 수준 변화에 대한 SNR 변동이 가장 작았다. 용접전류와 용접속도를 제외한 나머지 제어인자의 수준변화에 따른 SNR 변동은 대체로 작았다. 제어인자별 SNR 응답 민감도는 용접전류 > 용접속도 > 위빙각도 > 위빙진폭 > 용접전압 > 토치각도 > 후진각도 > 옵셋의 순이었다. 전체 제어인자의 수준별 SNR의 평균은 -5.22db였다.
Table 7
Response table of mean SNR to the level of control variables
Control variables Mean SNR per level Range
L 1 L 2 L 3
Backward angle -5.07 -5.37 0.30
Welding speed -5.77 -5.56 -4.34 1.43
Welding current -4.22 -5.11 -6.33 2.11
Welding voltage -5.07 -5.45 -5.15 0.38
Teaching offset -5.35 -5.14 -5.18 0.21
Torch angle -5.05 -5.38 -5.24 0.34
Weaving amplitude -5.46 -5.15 -5.06 0.40
Weaving angle -5.38 -4.92 -5.36 0.46
Average of mean SNR, SNR̅= -5.22db
Fig. 11은 제어인자별 수준에 따른 SNR을 도식화한 것으로 전술한 것과 같이 용접속도와 용접전류의 수준 변화에 따른 SNR 변동이 다른 제어인자의 수준 변화에 따른 SNR 변동보다 크게 나타나고 있으며, 용접속도와 용접전류의 수준에 따른 SNR 증감 방향은 서로 반대인 경향을 보였다. SNR 변동이 큰 용접속도와 용접전류의 최적값은 실험범위 내에서 각각 80cpm, 400A이지만 수준 변화에 따른 SNR 거동이 거의 선형적이므로 용접속도의 경우 80cpm보다 빠른 속도에서, 용접전류의 경우 400A보다 낮은 전류에서 품질 목표에 더 최적인 조건을 찾을 수 있다고 판단된다. 따라서 향후 각 수준 값을 재설정한 추가 실험을 통해 더욱 정밀한 최적값을 결정할 수 있을 것으로 사료된다. 본 시험조건 내의 제어인자별 SNR 응답 특성으로부터 각 제어인자별 최적 수준 조합을 결정하면 Table 8과 같다.
Fig. 11
SNR diagram to the level of control variables
jwj-42-6-606-g011.jpg
Table 8
Optimal combination of control variables
Control variables Optimal condition
Level Value
Backward angle, degree 1 5
Welding speed, cpm 3 80
Welding current, A 1 400
Welding voltage, V 1 32
Teaching offset, mm 2 0.0
Torch angle, degree 1 41
Weaving amplitude, mm 3 1.4
Weaving angle, degree 2 5
Table 8의 제어인자별 최적 수준 조합에 대한 SNR을 SNRopt로 하면 SNRopt는 아래의 식 (11)로 추정할 수 있다15). Table 7에서 제어인자별 최적 수준의 SNR값을 식 (11)에 대입하여 계산된 SNRopt는 -2.31db였다.
(11)
SNRopt=SNR¯+(SNRatoptimallevelSNR¯)
Table 9는 직교배열 시험에 따른 수평 필렛 용접부의 품질특성치에 대한 제어인자의 분산분석(ANOVA)을 행한 결과이다. SNR의 제곱합에 따른 용접속도와 용접전류의 기여율은 각각 29.7%와 55.8%이며, 두 제어인자의 기여율 합은 85.5%로 나머지 제어인자의 기여율에 비해 절대적으로 높았다. 용접속도, 용접전류, 위빙각도를 제외한 나머지 제어인자의 기여율은 잔차의 기여율인 3.2%보다 낮아서 제어인자의 수준변화에 따른 유의성이 낮음을 보였다.
Table 9
Result of ANOVA for TW-FCAW test
Control variables DOF Sum of square Contribution (%)
Backward angle 1 0.41 1.7
Welding speed 2 7.16 29.7
Welding current 2 13.42 55.8
Welding voltage 2 0.47 2.0
Teaching offset 2 0.15 0.6
Torch angle 2 0.34 1.4
Weaving amplitude 2 0.53 2.2
Weaving angle 2 0.81 3.4
(Residual) (2) (0.77) (3.2)
Total 17 24.06 100

3.3 최적 공정변수 조합의 검증 실험

Table 10은 GRA를 가미한 다구찌법을 통해 구한 TW-FCAW의 최적 용접 공정 변수 조합으로 용접한 수평 필렛 용접부의 세 개 단면 형상과 단면 형상으로부터 측정된 필렛 용접부 치수를 나타내고 있다. 각 단면의 매크로 형상과 같이 거의 선형적인 필렛 용접부가 형성되었으며, 각 단면의 목두께는 모두 목푯값인 4.26 mm에 근접하였다. su와 sd의 차도 최대 0.41mm로 거의 등변 필렛이 형성되었다.
Table 10
Result of verification test under optimal welding variables for TW-FCAW
\ Section A Section B Section C
Macro jwj-42-6-606-g012.jpg jwj-42-6-606-g013.jpg jwj-42-6-606-g014.jpg
Size t=4.25mm
su=6.80mm
sd=7.21mm
R=0.87mm
t=4.36mm
su=7.25mm
sd=7.29mm
R=1.0mm
t=4.28mm
su=6.79mm
sd=6.50mm
R=0.75mm
SNR Prediction -2.31db
Verification test -2.42db
Ratio 95.5%
각 단면에서 측정한 용접부 치수를 이용하여 계산된 SNR은 -2.42db로서, Fig. 10에 나타낸 시험순번별 SNR의 최댓값인 Test No. 16조건의 -2.99db보다 0.57db만큼 높았다. 이는 최적 공정변수 조합을 적용함으로써 용접부 치수 품질이 개선된 결과이다. 한편 검증 실험의 용접부에서 계산된 SNR인 -2.42db은 식 (11)에 따른 최적 수준 조합에서의 SNR 추정값인 -2.31db과 비교하여 약 95.5%의 비율로 높은 재현 정확도를 보였다.

4. 결 론

본 연구에서는 쌍전극 FCAW 공정을 적용한 수평 필렛 용접에 대해 GRA를 가미한 다구찌법으로 최적 용접 공정변수를 구하였다. 레이저 스캐닝과 역설계를 통해 생성한 용접부의 삼차원 표면 모델로부터 용접부 치수를 구하여 최적화를 위한 품질특성치를 계산하였다. 본 연구를 통해 얻은 결론은 다음과 같다.
  • (1) 레이저 스캐닝과 역설계를 통해 가시화된 삼차원 표면 모델의 단면 형상이 실제 용접부 단면의 매크로 형상과 양호하게 일치함을 확인하였으며, 이를 이용하여 용접부 단면의 상세 치수를 결정할 수 있었다.

  • (2) GRA를 가미한 다구찌법을 통해 수평 필렛 용접부에 대한 TW-FCAW의 최적 용접 공정 변수를 결정하였다. 품질특성치에 대한 기여율이 높은 두 가지의 용접 변수는 용접속도와 전류였으며 실험범위 내에서 용접속도와 전류의 최적값은 각각 80cpm, 400A였다. 그 외의 용접 변수 최적값은 후진각도 5°, 용접전압 32V, 옵셋 0mm, 토치각도 41°, 위빙진폭 1.4mm, 위빙각도 5°였다.

  • (3) 단전극 용접 공정에 비해 상대적으로 빠른 용접속도를 적용한 TW-FCAW로 설계 치수에 상응하는 필렛 용접부를 얻을 수 있었다.

  • (4)제어인자별 최적 수준 조합의 유효성을 검증하기 위한 재현 실험을 통해 SNR의 예측값 대비 재현 실험에서의 SNR값의 비율이 95.5%로 매우 양호한 품질 재현성을 확인하였다. 최적 용접 변수 조합을 적용하여 거의 등변인 선형 필렛 용접부를 얻을 수 있었으며, 목두께의 평균값도 4.29mm로 목표값인 4.26mm에 거의 근접한 결과를 얻었다.

감사의 글

본 연구는 산업통상자원부 선박소부재생산지능화핵심기술개발사업의 “자동용접 99% 이상의 성능을 갖는 무인 자율 용접시스템 개발(RS-2023-00253140)” 과제의 지원을 받아 수행되었습니다.

References

1. S. B. Shin, J. G. Kang, and S. G. Nam, Recent Trend of Smart Shipyard Technology in Korea, J. Weld. Join. 1(3) (2022) 14–31.
2. Kobelco, GMAW Line Welders:Innovating Fillet Welding on the Assembly Line, Kobelco Welding Today. 11(2) (2008) 6
3. H. D. Im, C. H. Choi, J. H. Jung, and W. Kil, The Latest Technology Development Trends of Flux Cored Wire, J. Weld. Join. 34(6) (2016) 1–10. https://doi.org/10.5781/JWJ.2016.34.6.1
[CROSSREF] 
4. E. Lassaline, B. Zajaczkowski, and T. H. North, Narrow Groove Twin-wire GMAW of High-strength Steel, Welding J. 68(9) (1989) 55–58.
5. K. Michie, S. A. Blackman, and T. Ogunbiyi, Twin-wire GMAW:Process, Characteristics and Applications, Welding J. 78(5) (1999) 31–34.
6. M. Carney, D. Harwig, N. Kapustka, and T. Peterson, Twin-wire GMAW for High-productivity Precision Fillet Welds, EWI Technical Report.
7. H. M. Chen and S. J. Wu, Effect of Arc Length on Weld Appearance and Metal Transfer in Twin-wire GMAW Process, Adv. Mater. Res. 472-475 (2012) 1279–1283. https://doi.org/10.4028/www.scientific.net/AMR.472- 475.1279
[CROSSREF] 
8. P. J. Groetelaars, C. O. de Morais, and A. Scotti, Influence of the Arc Length on Metal Transfer in the Single Potential Double-wire MIG/MAG Process, Weld. Int. 23(2) (2009) 112–119. https://doi.org/10.1080/09507110802349643
[CROSSREF] 
9. H. J. Choi, T. H. Kang, J. Y. Yu, Y. M. Kim, S. H. Lee, and D. Y. Kim, Optimization of Welding Process Parameter for Gap Response in Aluminum GMAW Using Taguchi Method, J. Weld. Join. 41(1) (2023) 28–36. https://doi.org/10.5781/JWJ.2023.41.1.3
[CROSSREF] 
10. J. L. Deng, Control Problems of Grey Systems, Syst. Control Lett. 1(5) (1982) 288–294. https://doi.org/10.1016/S0167-6911(82)80025-X
[CROSSREF] 
11. U. Esme, M. Bayramoglu, Y. Kazancoglu, and S. Ozgun, Optimization of Weld Bead Geometry in TIG Welding Process Using Grey Relation Analysis and Taguchi Method, Mater. Technol. 43(3) (2009) 143–149.
12. H. L. Lin and J. C. Yan, Optimization of Weld Bead Geometry in the Activated GMA Welding Process via a Grey-based Taguchi Method, J. Mech. Sci. Technol. 28(8) (2014) 3249–3254. https://doi.org/10.1007/s12206-014-0735-9
[CROSSREF] 
13. O. S. Ogbonna, S. A. Akinlabi, N. Madushele, O. S. Fatoba, and E. T. Akinlabi, Grey-based Taguchi Method for Multi-weld Quality Optimization of Gas Metal Arc Dissimilar Joining of Mild steel and 316 Stainless Steel, Results Eng. 17 (2023) 100963. https://doi.org/10.1016/j.rineng.2023.100963
[CROSSREF] 
14. Welding Consumables, 15th edition, Hyundai Welding. (2024)
15. M. S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall Pub. New Jersey, USA(1989)
TOOLS
METRICS Graph View
  • 0 Crossref
  •    
  • 122 View
  • 16 Download
ORCID iDs

Myoung Soo Han
https://orcid.org/0000-0003-4383-4817

Weon Gu Lee
https://orcid.org/0009-0007-7461-1727

Gyung Do Park
https://orcid.org/0009-0000-1042-3355

Related articles


ABOUT
BROWSE ARTICLES
ARTICLE CATEGORY 
FOR CONTRIBUTORS
Editorial Office
#304, San-Jeong Building, 23, Gukhoe-daero 66-gil, Yeongdeungpo-gu, Seoul 07237, Korea
Tel: +82-2-538-6511    Fax: +82-2-538-6510    E-mail: koweld@kwjs.or.kr                

Copyright © 2025 by The Korean Welding and Joining Society.

Developed in M2PI