1. A. I. Osman, N. Mehta, A. M. Elgarahy, M. Hefny, A. Al-Hinai, A. H. Al-Muhtaseb, and D. W. Rooney, Hydrogen production, storage, utilisation and environmental impacts:a review,
Environ. Chem. Lett. 20 (2021) 153–188.
https://doi.org/10.1007/s10311-021-01322-8
[CROSSREF]
3. M. Boudellal. Power-to-gas:renewable hydrogen economy. De Gruyter. Berlin, Germany: (2018)
5. J. L. Silveira. Sustainable hydrogen production processes (green energy and technology). Springer; Berlin, Germany: (2017)
7. S. Z. A. Ghafri, S. Munro, U. Cardella, T. Funke, W. Notardonato, J. P. M. Trusler, J. Leachman, R. Span, S. Kamiya, G. Pearce, A. Swanger, E. D. Rodriguez, P. Bajada, F. Jiao, K. Peng, A. Siahvashi, M. L. Johns, and E. F. May, Hydrogen liquefaction:a review of the fundamental physics, engineering practice and future opportunities,
Energy Environ. Sci. 7 (2022) 2690–2731.
https://doi.org/10.1039/D2EE00099G
[CROSSREF]
9. O. Barrera, D. Bombac, Y. Chen, T. D. Daff, E. GalindoNava, P. Gong, D. Haley, R. Horton, I. Katzarov, J. R. Kermode, C. Liverani, M. Stopher, and F. Sweeney, Understanding and mitigating hydrogen embrittlement of steels:a review of experimental, modelling and design progress from atomistic to continuum,
J. Mater. Sci. 53 (2018) 6251–6290.
https://doi.org/10.1007/s10853-017-1978-5
[CROSSREF] [PUBMED] [PMC]
11. X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, and X. Song, Review of Hydrogen Embrittlement in Metals:Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention,
Acta Metall. Sin. Engl. Lett. 33 (2020) 759–773.
https://doi.org/10.1007/s40195-020-01039-7
[CROSSREF]
14. S. M. Myers, M. I. Baskes, H. K. Birnbaum, J. W. Corbett, G. G. DeLeo, S. K. Estreicher, E. E. Haller, P. Jena, N. M. Johnson, R. Kirchheim, S. J. Pearton, and M. J. Stavola, Hydrogen interactions with defects in crystalline solids,
Rev. Mod. Phys. 64 (1992) 559–617.
https://doi.org/10.1103/REVMODPHYS.64.559
[CROSSREF]
17. S. Y. Lee, S. H. Lee, and B. C. Hwang, Effect of Surface Condition on Tensile Properties of Fe-30Mn-0.2C-(1.5Al) High-Manganese Steels Hydrogen-Charged Under High Temperature and Pressure,
Korean J. Mater. Res. 27(6) (2017) 318–324.
https://doi.org/10.3740/MRSK.2017.27.6.318
[CROSSREF]
18. J. H. Lee, H. J. Park, M. H. Kim, H. J. Kim, J. Y. Suh, and N. H. Kang, Role of Hydrogen and Temperature in Hydrogen Embrittlement of Equimolar CoCrFeMnNi High-entropy Alloy,
Met. Mater. Int. 27 (2021) 166–174.
https://doi.org/10.1007/s12540-020-00752-3
[CROSSREF]
23. (IMO) International Maritime Organization, International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code), IMO. (2016)
24. (IMO) International Maritime Organization, International Code of Safety for Ships Using Gases or Other Low-flashpoint Fuels (IGF Code), IMO. (2017)
25. ASTM International, Standard Test Methods for Tension Testing of Metallic Materials (ASTM E8/E8M-21). West Conshohocken, ASTM International. (2021)
26. ISO, Metallic materials Unified method of test for the determination of quasistatic fracture toughness (ISO 12135/ISO 15653), International Organization for Standardization. (2018)
27. ISO, Steel Measurement method for the evaluation of hydrogen embrittlement resistance of high strength steels Part 1: Constant load test (ISO 16573-1:2020), International Organization for Standardization. (2020)
28. A. B. Soliman, H. S. Abdel-Samad, S. S. Abdel Rehim, and H. H. Hassan, Surface functionality and electrochemical investigations of a graphitic electrode as a candidate for alkaline energy conversion and storage devices,
Sci. Rep. 6 (2016) 22056.
https://doi.org/10.1038/srep22056
[CROSSREF] [PUBMED] [PMC]
33. H. Ghadiani, Z. Farhat, T. Alam, and M. A. Islam, Assessing Hydrogen Embrittlement in Pipeline Steels for Natural Gas-Hydrogen Blends:Implications for Existing Infrastructure,
Solids. 5(3) (2024) 375–393.
https://doi.org/10.3390/solids5030025
[CROSSREF]