1. G. Sasikala, V. M. Jothiprakash, B. Pant, R. Subalakshmi, M. T. Azhagan, K. Arul, W. B. Alonazi, M. Karnan, and S. Praveen Kumar, Optimization of Process Parameters for Friction Stir Welding of Different Aluminum Alloys AA2618 to AA5086 by Taguchi Method,
Int. J. Appli. Eng. Res. 2022(1) (2022) 3808605.
https://doi.org/10.1155/2022/3808605
[CROSSREF]
3. M. Mijajlovic, D. Milčić, A. Boban, and V. Miomir, Mathematical Model for Analytical Estimation of Generated Heat During Friction Stir Welding Part 2,
J. Balkan Tribologic. Associ. 17(3) (2011) 361–370.
https://doi.org/10.1004/s14571-002-0524-3
[CROSSREF]
5. Y. S. Sato, M. Urata, and H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063,
Metall. Mater. Trans A. 33(3) (2002) 625–635.
https://doi.org/10.1007/s11661-002-0124-3
[CROSSREF]
8. D. G. Kim, H. Badarinarayan, I. Ryu, J. H. Kim, C. M. Kim, K. Okamoto, R. H. Wagoner, and K. S. Chung, Numerical simulation of friction stir welding process,
Int. J. Mater. Forming. 2(1) (2009) 383–386.
https://doi.org/10.1007/s12289-009-0459-z
[CROSSREF]
11. M. Sivashanmugam, T. Kumar, S. Ravikumar, V. S. Rao, and D. Muruganandam. A Review on Friction Stir Welding for Aluminium Alloys.
Proceedings of Frontier Automobile and Mechanical Engineering (FAME). Chennai, India: (2010), p. 216–222
https://doi.org/10.1109/FAME.2010.5714839
[CROSSREF]
19. I. Galvão, J. C. Oliveira, A. Loureiro, and D. M. Rodrigues, Formation and distribution of brittle structures in friction stir welding of aluminium and copper:influence of process parameters,
Sci. Technol. Weld. join. 16(8) (2012) 681–689.
https://doi.org/10.1179/1362171811Y.0000000057
[CROSSREF]
20. T. Prater, C. Cox, B. Gibson, A. M. Strauss, and G. E. Cook, Dimensional Analysis and A Potential Classification Algorithm for Prediction of Wear in Friction Stir Welding of Metal Matrix Composites,
Proc. Inst. Mech. Eng., Part C:J. Mech. Eng. Sci. 226(11) (2012) 2759–2769.
https://doi.org/10.1177/0954406212438987
[CROSSREF]
21. M. K. Sued, D. Pons, J. Lavroff, and E. H. Wong, Design Features for Bobbin Friction Stir Welding Tools:Development of A Conceptual Model Linking The Underlying Physics to The Production Process,
Mater. Des. 54 (2014) 632–643.
https://doi.org/10.1016/j.matdes.2013.08.057
[CROSSREF]
22. M. H. Shojaeefard, A. Khalkhali, M. Akbari, and P. Asadi, Investigation of friction stir welding tool parameters using fem and neural network,
Proc. Inst. Mech. Eng., Part L:J. Mater.:Des. Appl. 229(3) (2013) 1012–1021.
https://doi.org/10.1177/1464420713509075
[CROSSREF]
24. T. Wang, H. Sidhar, R. S. Mishra, Y. Hovanski, P. Upadhyay, and B. Carlson, Evaluation of Intermetallic Compound Layer at Aluminum/steel Interface Joined By Friction Stir Scribe Technology,
Mater. des. 174 (2019) 107795.
https://doi.org/10.1016/j.matdes.2019.107795
[CROSSREF]
25. R. Kumar, R. Singh, and I. P. S. Ahuja, Friction Stir Welding of 3D Printed Melt Flow Compatible Dissimilar Thermoplastic Composites,
Proc. Inst. Mech. Eng., Part C:J. Mech. Eng. Sci. 235(10) (2019) 568–574.
https://doi.org/10.1177/0954406219848465
[CROSSREF]