2. H. Yamada, R. Kasada, A. Ozaki, R. Sakamoto, Y. Sakamoto, H. Takenaga, T. Tanaka, H. Tanigawa, K. Okano, K. Tobita, O. Kaneko, and K. Ushigusa, Development of Strategic Establishment of Technology Bases for a Fusion DEMO Reactor in Japan,
J. Fusion Energy. 35 (2016) 4–26.
https://doi.org/10.1007/s10894-015-0018-1
[CROSSREF]
6. H. Tanigawa, K. Shiba, A. Moslang, R. E. Stoller, R. Lindau, M. A. Sokolov, G. R. Odette, R. J. Kurtz, and S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket,
J. Nucl. Mater. 417(1-3) (2011) 9–15.
https://doi.org/10.1016/j.jnucmat.2011.05.023
[CROSSREF]
7. H. K. Kim, J. W. Lee, J. O. Moon, C. H. Lee, and H. U. Hong, Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/ martensitic steel for nuclear fusion reactors,
J. Nucl. Mater. 500 (2018) 327–336.
https://doi.org/10.1016/j.jnucmat.2018.01.008
[CROSSREF]
9. Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R. J. Kurtz, R. Lindau, T. Muroga, G. R. Odette, B. Raj, R. E. Stoller, L. Tan, H. Tanigawa, A. A. F. Tavassoli, T. Yamamoto, F. Wan, and Y. Wu, Recent progress of R&D activities on reduced activation ferritic/ Martensitic steels,
J. Nucl. Mater. 442(1-3) (2013) S2–S8.
https://dx.doi.org/10.1016/j.jnucmat.2012.12.039
[CROSSREF]
12. S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R. Odette, A. A. Tavassoli, K. Shiba, A. Kohyama, and A. Kimura, Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H,
J. Nucl. Mater. 307-311(1) (2002) 179–186.
https://doi.org/10.1016/S0022-3115(02)01075-9
[CROSSREF]
13. H. Tanigawa, E. Gaganidze, T. Hirose, M. Ando, S. J. Zinkle, R. Lindau, and E. Diegele, Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications,
Nucl. Fusion. 57(9) (2017) 092004.
https://doi.org/10.1088/1741-4326/57/9/092004
[CROSSREF]
18. S. Y. Jun, S. Y. Im, J. O. Moon, C. H. Lee, and H. U. Hong, Technical issues in fusion welding of reduced activation ferritic/martensitic steels for nuclear fusion reactors,
J. Weld. Join. 38(1) (2020) 47–55.
https://doi.org/10.5781/JWJ.2020.38.1.5
[CROSSREF]
21. V. Sklenicka, K. Kucharova, P. Kral, M. Kvapilova, M. Svobodova, and J. Cmakal, The effect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe,
Mater. Sci. Eng. 644 (2015) 297–309.
https://doi.org/10.1016/j.msea.2015.07.072
[CROSSREF]
24. C. H. Lee, J. O. Moon, M. G. Park, T. H. Lee, M. H. Jang, H. C. Kim, and D. W. Suh, Effect of constituent phase on mechanical properties of 9Cr-1WVTa reduced activation ferritic-martensitic steels,
J. Nucl. Mater. 455(1-3) (2014) 421–425.
https://doi.org/10.1016/j.jnucmat.2014.07.047
[CROSSREF]
25. S. Y. Jun, T. Y. Kim, S. Y. Im, C. W. Kim, B. H. Lee, J. O. Moon, C. H. Lee, and H. U. Hong, Atomic scale identification of nano-sized precipitates of Ta/Ti-added RAFM steel and its superior creep strength,
Mater. Charact. 169 (2020) 110596.
https://doi.org/10.1016/j.matchar.2020.110596
[CROSSREF]
26. T. K. Kim, T. H. Kim, Y. H. Cho, B. H. Lee, J. O. Moon, C. H. Lee, H. Y. Ha, T. H. Lee, and H. U. Hong, Influence of Ti addition on MX precipitation and creep-fatigue properties of RAFM steel for nuclear fusion reactor,
J. Nucl. Mater. 571 (2022) 154001.
https://doi.org/10.1016/j.jnucmat.2022.154001
[CROSSREF]
27. Y. H. Jo, T. H. Kim, C. W. Kim, J. O. Moon, C. H. Lee, S. J. Jung, and H. U. Hong, Characterization of high-temperature tensile properties and thermal stability in gas tungsten arc welds of Ti-added reduced activation ferritic/martensitic steel,
J. Wel. Join. 40(4) (2022) 295–304.
https://doi.org/10.5781/JWJ.2022.40.4.1
[CROSSREF]
28. C. R. Das, S. K. Albert, S. Sam, P. Mastaniah, G. M. S. K. Chaitanya, A. K. Bhaduri, T. Jayakumar, C. V. S. Murthy, and E. Rajendrakumar, Mechanical properties of 9Cr-1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process,
Fusion Eng. Des. 89(11) (2014) 2672–2678.
https://doi.org/10.1016/j.fusengdes.2014.07.001
[CROSSREF]