1. D. I. McKay, A. Staal, J. F. Abrams, R. Winkelmann, B. Sakschewski, S. Loriani, I. Fetzer, S. E. Cornell, J. Rockström, and T. M. Lenton, Exceeding 1.5°C Global Warming Could Trigger Multiple Climate Tipping Points,
Sci. 377(6611) (2022) 377.
https://doi.org/10.1126/science.abn7950
[CROSSREF]
2. A. Islam, S. H. Teo, C. H. Ng, Y. H. Taufiq-Yap, S. Y. T. Choong, and Md. R. Awual, Progress in Recent Sustainable Materials for Greenhouse Gas (NOx and SOx) Emission Mitigation,
Prog. Mater. Sci. 132 (2023) 101033.
https://doi.org/10.1016/j.pmatsci.2022.101033
[CROSSREF]
5. T. Gronholm, T. Makela, J. Hatakka, J. P. Jalkanen, J. Kuula, T. Laurila, L. Laakso, and J. Kukkonen, Evaluation of Methane Emissions Originating from LNG Ships Based on the Measurements at a Remote Marine Station,
Environ. Sci. Technol. 55(20) (2021) 13677–13686.
https://doi.org/10.1021/acs.est.1c03293
[CROSSREF] [PUBMED] [PMC]
12. R. R. Ratnakar, N. Gupta, K. Zhang, C. van Doorne, J. Fesmire, B. Dindoruk, and V. Balakotaiah, Hydrogen Supply Chain and Challenges in Large-Scale LH2 Storage and Transportation,
Int. J. Hydrog. Energy. 46(47) (2021) 24149–24168.
https://doi.org/10.1016/j.ijhydene.2021.05.025
[CROSSREF]
14. M. S. Kim and K. W. Chun, A Comprehensive Review on Material Compatibility and Safety Standards for Liquid Hydrogen Cargo and Fuel Containment Systems in Marine Applications,
J. Mar. Sci. Eng. 11(10) (2023) 1927.
https://doi.org/10.3390/jmse11101927
[CROSSREF]
15. T. Suzuki, K. Shiota, Y. I. Izato, M. Komori, K. Sato, Y. Takai, T. Ninomiya, and A. Miyake, Quantitative Risk Assessment Using a Japanese Hydrogen Refueling Station Model,
Int. J. Hydrog. Energy. 46(11) (2021) 8329–8343.
https://doi.org/10.1016/j.ijhydene.2020.12.035
[CROSSREF]
16. A. Campari, A. J. N. Akel, F. Ustolin, A. Alvaro, A. Ledda, P. Agnello, P. Moretto, R. Patriarca, and N. Paltrinieri, Lessons Learned from HIAD 2.0:Inspection and Maintenance to Avoid Hydrogen-Induced Material Failures,
Comput. Chem. Eng. 173 (2023) 108199.
https://doi.org/10.1016/j.compchemeng.2023.108199
[CROSSREF]
17. F. Ostovan, E. Shafiei, M. Toozandehjani, I. F. Mohamed, and M. Soltani, On the Role of Molybdenum on the Microstructural, Mechanical and Corrosion Properties of the GTAW AISI 316 Stainless Steel Welds,
J. Mater. Res. Technol. 13 (2021) 2115–2125.
https://doi.org/10.1016/j.jmrt.2021.05.095
[CROSSREF]
19. S. Fukuyama, D. S. Sun, L. Zhang, and M. Wen, Effect of Temperature on Hydrogen Environment Embrittlement of Type 316 Series Austenitic Stainless Seels at Low Temperatures,
J. Japan Inst. Met. Mater. 67(9) (2003) 456–459.
https://doi.org/10.2320/jinstmet1952.67.9_456
[CROSSREF]
20. H. I. Mchenry. The Properties of Austenitic Stainless Steel at Cryogenic Temperatures. plenum Press; New York, USA: (1983), p. 1–27
21. J. I. Choe, The Effect of Nickel and Nitrogen on Cryogenic Properties of Austenitic Stainless Steel, Korean J. Chem. Eng. 37(1) (2004) 64–70.
22. J. H. Hong, D. M. Keum, D. S. Han, I. B. Park, M. S. Chun, K. W. Ko, and J. M. Lee, Mechanical Characteristics of Stainless Steel under Low Temperature Environment,
J. Soc. Nav. Archit. Korea. 45(5) (2008) 530–537.
https://doi.org/10.3744/snak.2008.45.5.530
[CROSSREF]
26. J. H. Choi, Y. S. Kim, and H. J. Kim, Characteristics of Metal Transfer of GMAW Shieded by CO2 Gas, J. Korean Weld. Join. Soc. 16(3) (1998) 9–17.
28. Z. Gao, X. Shao, P. Jiang, L. Cao, Q. Zhou, C. Yue, Y. Liu, and C. Wang, Parameters Optimization of Hybrid Fiber Laser-Arc Butt Welding on 316L Stainless Steel Using Kriging Model and GA,
Opt. Laser Technol. 83 (2016) 153–162.
https://doi.org/10.1016/j.optlastec.2016.04.001
[CROSSREF]
31. V. Mee, H. Meelker, and R. V. D. Schelde, How to Control Hydrogen Level in (Super) Duplex Stainless Steel Weldments Using the GTAW or GMAW Process, Weld. Res. Supple. 78 (1999) 7–14s.
32. S. Y. Ahn and N. H. Kang, The Effects of δ-ferrite on Weldment of 9-12% Cr Steels,
J. Korean Weld Join. 31(6) (2013) 8–16.
[CROSSREF]
33. J. Xue, H. Wu, C. Zhou, Y. Zhang, M. He, X. Yan, H. Xie, R. Yan, and Y. Yin, Effect of Heat Input on Hydrogen Embrittlement of TIG Welded 304 Austenitic Stainless Steel,
Metals. 12(11) (2022) 1943.
https://doi.org/10.3390/met12111943
[CROSSREF]
35. M. H. Choi, J. H. Lee, H. B. Nam, N. H. Kang, M. H. Kim, and D. W. Cho, Tensile and Microstructural Characteristics of Fe-24Mn Steel Welds for Cryogenic Applications,
Met. Mater. Int. 26 (2020) 240–247.
https://doi.org/10.1007/s12540-019-00320-4
[CROSSREF]
38. E. J. Chun, S. J. Lee, J. Suh, N. H. Kang, and K. Saida, Solidification Cracking Behavior in Austenitic Stainless Steel Laser Welds (Part 1) Evaluation of Solidification Cracking Susceptibility by Laser Beam Welding Varestraint Test -,
J. Weld. Join. 34(5) (2016) 54–60.
https://doi.org/10.5781/JWJ.2016.34.5.54
[CROSSREF]
39. Y. K. Kim, K. R. Lim, and Y. S. Na, Tensile Testing at the Extremely Low Temperature of 6K:Microstructure and Mechanical Properties of a Fe-Mn-Cr Steel,
J. Korean Inst. Met. Mater. 61(6) (2023) 389–396.
https://doi.org/10.3365/KJMM.2023.61.6.389
[CROSSREF]
40. B. H. Choe, S. W. Lee, J. K. Ahn, J. H. Lee, and T. W. Lim, Hydrogen Induced Cracks in Stainless Steel 304 in Hydrogen Pressure and Stress Corrosive Atmosphere,
J. Korean Inst. Met. Mater. 58(10) (2020) 653–659.
https://doi.org/10.3365/KJMM.2020.58.10.653
[CROSSREF]
41. A. Fukunaga, Hydrogen Embrittlement Behaviors during SSRT Tests in Gaseous Hydrogen for ColdWorked Type 316 Austenitic Stainless Steel and Iron-Based Superalloy A286 Used in Hydrogen Refueling Station,
Eng. Fail. Anal. 160 (2024) 108158.
https://doi.org/10.1016/j.engfailanal.2024.108158
[CROSSREF]
42. K. Bhanu Sankara Rao, M. Valsan, and S. L. Mannan, Strain-Controlled Low Cycle Fatigue Behaviour of Type 304 Stainless Steel Base Material, Type 308 Stainless Stell Weld Metal and 304-308 Stainless Steel Weldments,
Mater. Sci. Eng. A. 130(1) (1990) 67–82.
https://doi.org/10.1016/0921-5093(90)90082-E
[CROSSREF]
43. A. Dhooge, S. Huysmans, B. Vandenberghe, J. Vekeman, and C. Jochum, Weldability and High Temperature Behavior of 12% Cr-Steel for Tubes and Pipes in Power Plants with Steam Temperatures up to 650 °C,
Mater. High. Temp. 23(3-4) (2006) 155–164.
https://doi.org/10.1179/mht.2006.009
[CROSSREF]
46. DetNorskeVeritas, Rules for Classifical of Ships New-buildings Materials and Welding Part 2 Chapter3 Welding, Hovik. Norway(1996)