1. K. M. Kim, U. Lee, H. Lee, S. M. Seo, and E. J. Chun, Quantifying Susceptibility to Solidification Cracking in Oscillated CM247LC Superalloy Welds via Varestraint Testing,
Met. Mater. Int. 29 (2022) 777–794.
https://doi.org/10.1007/s12540-022-01250-4
[CROSSREF]
2. K. M. Kim, H. E. Jeong, Y. S. Jeong, U. Lee, H. Lee, S. M. Seo, and E. J. Chun, Effect of ERNiFeCr-2 Filler Metal on Solidification Cracking Susceptibility of CM247LC Superalloy Welds, Korean,
J. Met. Mater. 59(10) (2021) 698–708.
http://dx.doi.org/10.3365/KJMM.2021.59.10.698
4. Y. S. Jeong, K. M. Kim, H. Lee, S. M. Seo, and E. J. Chun, Evaluation and Control of Liquation Cracking Susceptibility for CM247LC Superalloy Weld Heat- Affected Zone via Visualization-Based Varestraint Test,
Korean J. Met. Matzer. 59(7) (2021) 445–458.
http://dx.doi.org/10.3365/KJMM.2021.59.7.445
[CROSSREF] [PDF]
5. Y. S. Jeong, J. Jeong, S. Y. Kim, S. H. Bae, U. Lee, H. Lee, S. M. Seo, and E. J. Chun, Evaluation of Liquation Cracking Susceptibility of CM247LC Superalloy Repair Welds via Pre-Weld Varestraint Test,
Korean J. Met. Mater. 60(4) (2022) 272–281.
http://dx.doi.org/10.3365/KJMM.2022.60.4.272
[CROSSREF] [PDF]
6. E. J. Chun, Y. S. Jeong, S. M. Seo, and H. Kang, Li quation Cracking Susceptibility of Remelted and Reheated Weld Metals in CM247LC Superalloy using Multi-bead Varestraint Testing,
Sci. Technol. Weld. Join. 28(2) (2023) 108–117.
https://doi.org/10.1080/13621718.2022.2122246
[CROSSREF]
8. J. N. Dupont, J. C. Lippold, and S. D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys,
John Wiley &Sons, Inc New Jersey, USA. (2009) 47–156.
[CROSSREF]
9. Q. Wei, Y. Xie, Q. Teng, M. Shen, S. Sun, and C. Cai, Crack Types, Mechanisms, and Suppression Methods during High-energy Beam Additive Manufacturing of Nickel-based Superalloys:A Review,
Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers. 1(4) (2022) 100055.
https://doi.org/10.1016/j.cjmeam.2022.100055
[CROSSREF]
11. E. J. Chun, Y. S. Jeong, K. M. Kim, H. Lee, and S. M. Seo, Suppression of Liquation Cracking Susceptibility via Pre-weld Heat Treatment for Manufacturing of CM247LC Superalloy Turbine Blade Welds,
J. Adv. Joining Processes. 4 (2021) 100069.
https://doi.org/10.1016/j.jajp.2021.100069
[CROSSREF]
13. E. J. Chun, Y. S. Jeong, K. M. Kim, S. M. Seo, and H. S. Kang, Liquation Crack-free Welding Strategy for 247LC DS Superalloy by Control of Pipeline Diffusion via Ultra-high-speed Laser Beam Scanning,
Sci. Technol. Weld. Join. (2023)
https://doi.org/10.1080/13621718.2023.2189367
[CROSSREF]
14. H. R. Kotadia, P. Franciosa, S. Jabar, and D. Ceglarek, Remote laser welding of Zn coated IF steel and 1050 aluminiumalloy:processing, microstructure and mechanical properties,
J. Mater. Res. Technol. 19 (2022) 449–465.
https://doi.org/10.1016/j.jmrt.2022.05.041
[CROSSREF]
19. N. Lei, Z. Lu, K. Hu, X. Yu, P. Li, J. Bi, S. Wu, and Y. Chen, Hot Cracking Behavior and Mechanism of a Third-generation Ni-based Single Crystal Superalloy during Directed Energy Deposition,
Addit. Manuf. 34 (2020) 101228.
https://doi.org/10.1016/j.addma.2020.101228
[CROSSREF]