2. C. Thiel, W. Nijs, S. Simoes, J. Schmidt, A. Zyl, and E. Schmid, The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation,
Energ. Policy. 96 (2016) 153–166.
https://doi.org/10.1016/j.enpol.2016.05.043
[CROSSREF]
7. B. A. Behrens, A. Hübner, S. Raatz, C. Bonk, F. Bohne, C. Bruns, and M. Micke-Camuz, Automated stamp forming of continuous fiber reinforced thermoplastics for complex shell geometries,
Procedia CIRP. 66 (2017) 113–118.
https://doi.org/10.1016/j.procir.2017.03.294
[CROSSREF]
9. A. Arumugan and A. Pramanik, Review of experimental and finite element analyses of sport weld failures in automative metal joints, Jordan J. Mech. Industr. Eng. 14(3) (2020) 315–337.
11. S. T. Auwal, S. Ramesh, Z. Zhang, J. Liu, C. Tan, and S. M. Manladan, Influence of electro-deposited Cu-Ni layer on interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti lap joints,
J. Manuf. Process. 37 (2019) 251–265.
https://doi.org/10.1016/j.jmapro.2018.11.029
[CROSSREF]
12. A. Herwig, P. Horst, C. Schmidt, F. Pottmeyer, and K. A. Weidenmann, Design and mechanical characterisation of a layer wise build AFP insert in comparison to a conventional solution,
Prod. Eng. 12 (2018) 121–130.
https://doi.org/10.1007/s11740-018-0815-2
[CROSSREF]
14. J. Troschitz, R. Kupfer, and M. Gude, Experimental investigation of the load bearing capacity of insertsembedded in thermoplastic composites,
In Proceedings of the 4th International Conference Hybrid 2020 Materials and Structures Web Conference. (2020) 249–254.
https://doi.org/10.3390/app10207251
[CROSSREF]
15. O. Obruch, S. Jüttner, G. Ballschmiter, M. Kühn, and K. Dröder, Production of hybrid FRP/steel structures with a new sheet metal connecting element,
Biul. Inst. Spaw. 5 (2016) 60–66.
https://doi.org/10.3390/app10207251
[CROSSREF]
22. S. M. Manladan, F. Yusof, S. Ramesh, Y. Zhang, Z. Luo, and Z. Ling, Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints,
J. Mater. Process. Technol. 250 (2017) 45–54.
https://doi.org/10.1016/j.jmatprotec.2017.07.006
[CROSSREF]
23. Z. Ling, Y. Li, Z. Luo, S. Ao, Z. Yin, Y. Gu, and Q. Chen, Microstructure and fatigue behavior of resistance element welded dissimilar joints of DP780 dualphase steel to 6061-T6 aluminum alloy,
Int. J. Adv. Manuf. Technol. 92 (2017) 1923–1931.
https://doi.org/10.1007/s00170-017-0310-5
[CROSSREF]
25. S. Niu, M. Lou, Y. Ma, and Y. Li, Study on the microstructure and mechanical performance for integrated resistance element welded aluminum alloy/press hardened steel joints,
Mater. Sci. Eng. A. 80 (2021) 1–11.
https://doi.org/10.1016/j.msea.2020.140329
[CROSSREF]
31. G. Meschut, C. Schmal, and T. Olfermann, Process characteristics and load-bearing capacities of joints welded with elements for the application in multi-material design,
Weld. World. 61(3) (2017) 435–442.
https://doi.org/10.1007/s40194-017-0431-3
[CROSSREF]
33. K. Miller, Y. Chao, and P. Wang, Performance comparison of spot-welded, adhesive bonded, and self-piercing riveted aluminium joints, ASM Proceedings of the International Conference:Trends in Welding Research Georgia, USA. (1998) 910–915.
34. A. Krause and R. Chernenkoff, A comparative study of the fatigue behavior of spot welded and mechanically fastened aluminum joints,
SAE Mobulus. (1995) 9.
https://doi.org/10.4271/950710
[CROSSREF]
35. R. Müller, M. Hörhold, M. Merklein, and G. Meschut, Mechanical properties of an innovative shear-clinching technology for ultrahigh-strength steel and aluminium in lightweight car body structures,
Weld. World. 60 (2016) 613–620.
https://doi.org/ 10.1007/s40194-016-0313-0
[CROSSREF]
39. J. Jesweit, M. Geiger, U. Engel, M. Kleiner, M. Schikorra, J. Duflou, R. Neugebauer, P. Bariani, and S. Bruschi, Metal forming progress since 2000,
CIRP J. Manuf. Sci. Technol. 1 (2008) 2–17.
https://doi.org/10.1016/j.cirpj.2008.06.005
[CROSSREF]
40. Y. Zhang, X. Zhang, J. Guo, S. M. Manladan, Z. Luo, and Y. Li, Effects of local stiffness on the spot joints mechanical properties:comparative study between resistance spot welding and resistance spot clinching joints,
J. Manuf. Process. 39 (2019) 93–101.
https://doi.org/10.1016/j.jmapro.2019.02.018
[CROSSREF]
42. L. Boriwal, R. Sarviya, and M. Mahapatra, Optimization of weld bonding process parameters of austenitic stainless steel 304L and low carbon steel sheet dissimilar joints,
J. Adhes. Sci. Technol. 31(14) (2017) 1591–1616.
https://doi.org/10.1080/01694243.2016.1266844
[CROSSREF]
44. G. Meschut, C. Schmal, and T. Olfermann. Process characteristics and load-bearing capacities for joints welded with elements for the the application in multi-material design. Commission III (IIW). Hamburg, Germany: Intermediate Meeting; (2016), p. 435–442
45. H. Günter, V. Janzen, and G. Meschut, Joining process optimization of the resistance element welding for continually changing steel material properties, 5th International Conference on Steel in Cars and Trucks (SCT 2017), Amsterdam. (2017)
47. S. Y. Baek, J. H. Song, H. C. Lee, S. Y. Park, and K. H. Song, Robust bonding and microstructure behavior of aluminum/high-strength steel lap joints using resistance element welding process for lightweight vehicles:Experimental and numerical investigation,
Mater. Sci. Eng. A. 83 (2022) 1–18.
https://doi.org/10.1016/j.msea.2021.142378
[CROSSREF]
48. I. Tomohiro, S. Masahito, O. Takatoshi, and M. Yutaka, Development of advanced electric resistance welding (ERW) linepipe Mighty SeamTM with high quality weld seam suitable for extra-low temperature services, JFE Technical Report. 18 (2013) 18–22.
49. A. Zvorykina, O. Sherepenko, and S. Jüttner, Novel projection welding technology for joining of steel-aluminum hybrid components-part 1:technology and its potential for industrial use,
Weld. World. 64 (2020) 317–326.
https://doi.org/10.1007/s40194-019-00833-x
[CROSSREF]
50. C. Schmal and G. Meschut, Process characteristics and influences of production-related disturbances in resistance element welding of hybrid materials with steel cover sheets and polymer core,
Weld. World. 64 (2020) 437–448.
https://doi.org/10.1007/s40194-019-00842-w
[CROSSREF]
51. J. Mahieu, J. Maki, B. C. Cooman, and S. Claessens, Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel,
Metall. Mate. Trans. 33 (2002) 2573–2580.
https://doi.org/10.1007/s11661-002-0378-9
[CROSSREF]
52. Z. Rao, L. Liu, Y. Wang, L. Ou, and J. Liu, Preventing nugget shifting in joining of dissimilar steels via resistance element welding:a numerical simulation,
Int. J. Adv. Manuf. Technol. (2021) 227–241.
https://doi.org/10.1007/s00170-021-07683-2
[CROSSREF]
53. Y. Sun, R. Huang, H. Zhao, X. Chen, M. Jiang, L. Wu, B. Chen, and C. Tan, Enhancement of resistance element welding of AA6061 to DP600 steel by using external magnetic field,
J. Manuf. Process. 80 (2022) 347–358.
https://doi.org/10.1016/j.jmapro.2022.06.001
[CROSSREF]
56. S. Y. Baek, G. Y. Go, J. W. Park, J. H. Song, H. C. Lee, S. J. Lee, S. M. Lee, C. T. Chen, M. S. Kim, and D. J. Kim, Microstructure and interface geometrical influence on the mechanical fatigue property of aluminum/ high-strength steel lap joints using resistance element welding for lightweight vehicles:experimental and computational investigation,
J. Mater. Res. Technol. 17 (2022) 658–678.
https://doi.org/10.1016/j.jmrt.2022.01.041
[CROSSREF]
57. M. Eshraghi, M. A. Tschopp, M. A. Zaeem, and S. D. Felicelli, Effect of resistance spot welding parameters on weld pool properties in a DP600 dual-phase steel:A parametric study using thermomechanically-coupled finite element analysis,
Mater. Des. 56 (2014) 387–397.
https://doi.org/10.1016/j.matdes.2013.11.026
[CROSSREF]
59. Y. C. Hur, D. S. Jo, D. Y. Kim, K. S. Lee, M. G. Bae, S. E. Park, and J. H. Kim, Numerical analysis of resistance element welding of aluminum alloy and advanced high strength steel sheets, Trans. Korean Soc. Automot. Eng. (2020) 779–779.
60. F. N. Calado, J. P. M. Pragana, I. M. F. Bragança, C. M, A. Silva, and P. A. F. Martins, Resistance element welding of sandwich laminates with hidden inserts,
Int. J. Adv. Manuf. Technol. 118 (2022) 1565–1575.
https://doi.org/10.1007/s00170-021-08063-6
[CROSSREF]
61. S. M. Manladan, Y. Zhang, S. Ramesh, Y. Cai, Z. Luo, S.Ao, and A. Arslan, Resistance element weld-bonding and resistance spot weld-bonding of Mg alloy/austenitic stainless steel,
J. Manuf. Process. 48 (2019) 12–30.
https://doi.org/10.1016/j.jmapro.2019.10.005
[CROSSREF]
62. B. S. Gawai, R. L. Karwande, Md. Irfan, and P. S. Thakre, Analysis and optimization of process parameters of resistance spot welding process using response surface method-A review,
Int. J. Res. Appl. Sci. Eng. Technol. 6 (2018) 2167–2175.
[CROSSREF]
63. Y. D. Park, Md. Abdul Karim, and G. Nam, Comparative study on mechanical and corrosion behavior of resistance element welding (REW) and self-pierce riveting (SPR) for steel/aluminum joints,
J. Weld. Join. 39(5) 497.
https://doi.org/10.5781/JWJ.2021.39.5.5
[CROSSREF]
64. H. U. Jun, J. W. Kim, J. H. Kim, K. W. Lee, J. C. Cheon, and C. W. Ji, Comparison of weld ability misalignment between rivets and electrodes in aluminum/steel resistance element welding,
J. Weld. Join. 39 (2021) 51–58.
https://doi.org/10.5781/JWJ.2021.39.1.6
[CROSSREF]
65. D. Aleksija, M. Dragan, M. Biljana, and M. Miodrag, Tensile-shear testing od resistance element welded joint of carbon fiber-reinforced polymer and DP500 steel, Innov. Mech. Eng. 1 (2022) 139–146.