1. J. C. Seo, I. D. Choi, H. R. Son, C. Ji, C. Kim, S. B. Suh, J. Seo, and Y. D. Park, A comparative study of constant current control and adaptive control on electrode life time for resistance spot welding of galvanized steels,
J Weld Join. 33 (2015) 47–55.
https://doi.org/10.5781/JWJ.2015.33.2.47
[CROSSREF]
2. I. S. Chang, Y. J. Cho, H. S. Park, and D. Y. So, Importance of fundamental manufacturing technology in the automotive industry and the state of the art welding and joining technology,
J Weld Join. 34 (2016) 21–25.
https://doi.org/10.5781/JWJ.2016.34.1.21
[CROSSREF]
3. Y. Ma, Y. Yu, P. Geng, R. Ihara, K. Maeda, R. Suzuki, T. Suga, and N. Ma, Fracture modeling of resistance spot welded ultra-high-strength steel considering the effect of liquid metal embrittlement crack,
Mater. Des. 210 (2021) Article 110075.
https://doi.org/10.1016/j.matdes.2021.110075
[CROSSREF]
6. S. P. Murugan, J. B. Jeon, C. W. Ji, and Y. D. Park, Liquid zinc penetration induced intergranular brittle cracking in resistance spot welding of galvannealed advanced high strength steel,
Weld. World. 64 (2020) 1957–1969.
https://doi.org/10.1007/s40194-020-00975-3
[CROSSREF]
7. D. Bhattacharya, L. Cho, E. Van der Aa, A. Pottore, N. Pichler, H. Ghassemi-Armaki, K.O. Findley, and J. G. Speer, Influence of the starting microstructure of an advanced high strength steel on the characteristics of Zn- Asisted liquid metal embrittlement,
Met. Sci. Eng. 804 (2021) Article 140391.
https://doi.org/10.1016/j.msea.2020.140391
[CROSSREF]
10. A. Ghatei Kalashami, C. DiGiovanni, M. H. Razmpoosh, F. Goodwin, and N.Y. Zhoua, The effect of silicon content on liquid-metal-embrittlement susceptibility in resistance spot welding of galvanized dual-phase steel,
J. Manuf. Process. 57 (2020) 370–379.
https://doi.org/10.1016/j.jmapro.2020.07.008
[CROSSREF]
12. J. U. Kim, S. P. Murugan, J. S. Kim, W. Yook, C. Y. Lee, C. W. Ji, J. B. Jeon, and Y. D. Park, Liquid metal embrittlement during the resistance spot welding of galvannealed steels:synergy of liquid Zn, α-Fe(Zn) and tensile stress,
Sci. Technol. Weld. Join. 26 (2021) 196–204.
https://doi.org/10.1080/13621718.2021.1880816
[CROSSREF]
13. S. P. Murugan, J. S. Kim, J. U. Kim, W. Yook, C. Y. Lee, J. B. Jeon, and Y. D. Park, Role of liquid Zn and α-Fe(Zn) on liquid metal embrittlement of medium Mn steel:An ex-situ microstructural analysis of galvannealed coating during high temperature tensile test,
Surf. Coat. Technol. 398 (2020) Article 126069.
https://doi.org/10.1016/j.surfcoat.2020.126069
[CROSSREF]
14. R. Ashiri, M.A. Haque, C.W. Ji, M. Shamanian, H. R. Salimijazi, and Y.D. Park, Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels,
Scr. Mater. 109 (2015) 6–10.
http://dx.doi.org/10.1016/j.scriptamat.2015.07.006
[CROSSREF]
16. O. Siar, Y. Benlatreche, T. Dupuy, S. Dancette, and D. Fabrègue, Effect of Severe Welding Conditions on Liquid Metal Embrittlement of a 3rd-Generation Advanced High-Strength Steel,
Metals. 10(9) (2019) 1166.
https://doi.org/10.3390/met10091166
[CROSSREF]
18. G. S. Jung and D. W. Suh, Zn-assisted liquid metal embrittlement of high Mn austenitic steels, Pohang University of Science and Technology, Pohang, Korea. (2015) 149
19. D. Y. Choi, A. Sharma, S. H. Uhm, and J. P. Jung, Liquid Metal Embrittlement of Resistance Spot Welded 1180 TRIP Steel:Effect of Electrode Force on Cracking Behavior,
Met. Mater. Int. 25 (2019) 219–228.
https://doi.org/10.1007/s12540-018-0180-x
[CROSSREF]
20. ISO 5821:2009. Resistance welding-spot welding electrode caps;International Standardization Organization (ISO). (2009)
21. S. P. Murugan, V. Vihayan, C. W. JI, and Y. D. Park, Four Types of LME Cracks in RSW of Zn-Coated AHSS (The thermal-mechanical-metallurgical characteristics of various crack locations are evaluated, and a classification of LME cracks is proposed),
Weld. J. 99 (2020) 75–92.
https://doi.org/10.29391/2020.99.008
[CROSSREF]
23. N. Haghdadi, D. Abou-Ras, P. Cizek, P. D. Hodgson, A. D. Rollett, and H. Beladi, Austenite-ferrite interface crystallography dependence of sigma phase precipitation using the five-parameter characterization approach,
Mater. Lett. 196 (2017) 264–268.
https://doi.org/10.1016/j.matlet.2017.03.090
[CROSSREF]
25. M. Batista, V. Furlanetto, and S. D. Brandi, Analysis of the Behavior of Dynamic Resistance, Electrical Energy and Force between the Electrodes in Resistance Spot Welding Using Additive Manufacturing,
Metals. 10(5) (2020) 690.
https://doi.org/10.3390/met10050690
[CROSSREF]
26. C. Böhne, G. Meschut, M. Biegler, and M. Rethmeier, Avoidance of liquid metal embrittlement during resistance spot welding by heat input dependent hold time adaption,
Sci. Technol. Weld. Join. 25(7) (2020) 617–624.
https://doi.org/10.1080/13621718.2020.1795585
[CROSSREF]
28. M. Sedighi, D. Afshari, and F. Nazari, Investigation of the effect of sheet thickness on residual stresses in resistance spot welding of aluminum sheets,
J. Mech. Eng. Sci. 232(4) (2016) 621–638.
https://doi.org/10.1177/0954406216685124
[CROSSREF]