5. J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, Light-induced irreversible structural phase transition in trilayer graphene,
Light Sci. Appl. 9(1) (2020) 1–11.
http://doi.org/10.1038/s41377-020-00412-6
[CROSSREF] [PUBMED] [PMC] [PDF]
8. J. E. Kim, M. K. Song, J. M. Lee, J. H. Hyun, G. H. Lee, and J. D. Kim, Experimental Investigations into Improve- ment of Cleaning Performance for Anticorrosive Paints for Shipbuilding using Handheld-Type Laser Cleaning Equipment,
J. Weld. Join. 39(5) (2021) 536–541.
https://doi.org/10.5781/JWJ.2021.39.5.10
[CROSSREF] [PDF]
9. J. E. Kim, M. K. Song, J. M. Lee, J. H. Hyun, and J. D. Kim, A Study on the Effect of Overlap Rate on Laser Beam Cleaning Characteristics while Cleaning Paint Using a Low Power Pulsed Laser(II) - Analysis of Laser Cleaned Surface Characteristics for Various Pulse Overlap Rates -,
J. Weld. Join. 37(5) (2019) 441–447.
https://doi.org/10.5781/JWJ.2019.37.5.2
[CROSSREF]
10. K. A. Drogowska-Horna, I. Mirza, A. Rodriguez, P. Kovaříček, J. Sládek, T. J.-Y. Derrien, M. Gedvilas, G. Ra£iukaitis, O. Frank, N. M. Bulgakova, and M. Kalbá£, Periodic surface functional group density on graphene via laser-induced substrate patterning at si/sio2 interface,
Nano Res. 13(9) (2020) 2332–2339.
http://doi.org/10.1007/s12274-020-2852-3
[CROSSREF] [PDF]
12. J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, Applications of laser-induced periodic surface structures (lipss), in:U. Klotzbach, K. Washio, R. Kling (Eds.), Laser- based Micro- and Nano processing XI, Vol. 10092,
International Society for Optics and Photonics, SPIE. (2017) 100920N.
https://doi.org/10.1117/12.2250919
[CROSSREF]
14. P. Hauschwitz, D. Jochcová, R. Jagdheesh, D. Rostohar, J. Brajer, J. Cimrman, M. Kope£ek, M. Smrž, T. Mocek, and A. Lucianetti, Towards rapid large-scale lipss fabrication by 4-beam ps dlip,
Opt Laser Technol. 133 (2021) 106532.
http://doi.org/10.1016/j.optlastec.2020.106532
[CROSSREF]
17. S. R. F. Javier, L. M. Sanchez-Brea, and E. Bernabeu, Micromachining of diffractive optical elements embedded in bulk fused silica by nanosecond pulses,
J. Light. Technol. 29(6) (2011) 850–855.
http://doi.org/10.1109/JLT.2011.2104939
[CROSSREF]
18. R. Simon, K. Wöbbeking, M. Li, W. Schade, and E. G. Hübner, From femtosecond to nanosecond laser microstructuring of conical aluminum surfaces by reactive gas assisted laser ablation,
Chem. Phys. Chem. 21(15) (2020) 1644.
https://doi.org/10.1002/cphc.202000418
[CROSSREF]
20. N. C. Vinh and D. M. Chun, Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing,
Appl. Surf. Sci. 435 (2018) 974–982.
http://doi.org/10.1016/j.apsusc.2017.11.185
[CROSSREF]
24. K. I. Shin, S. H. Ahn, and S. H. Kim, Feasibility Study of Laser Contact Angle Measurement for Nano-fiber Characterization, J. Korean Soc. Clothing and Textiles,. 27(5) (2003) 554–559.
25. D. Ahmad, I. van den Boogaert, J. Miller, R. Presswell, and H. Jouhara, Hydrophilic and hydrophobic materials and their applications,
Energy Sources, Part A:Recovery, Utilization, and Environmental Effects. 40(22) (2018) 2686–2725.
http://doi.org/10.1080/15567036.2018.1511642
[CROSSREF]
27. A. Žemaitis, A. Mimidis, A. Papadopoulos, P. Gečys, G. Račiukaitis, E. Stratakis, and M. Gedvilas, Contro- lling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes,
RSC Advances. 10(62) (2020) 37956–37961.
https://doi.org/10.1039/D0RA05665K
[CROSSREF] [PUBMED] [PMC]