1. M. Kim, Y. Ko, J. Bang, and C. Lee, The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump,
J. Microelectron. Packag. Soc. 19(3) (2012) 15–20. http://dx.doi.org/10.6117/kmeps.2012.19.3.015
[CROSSREF]
2. Y.K. Ko, Y. H. Ko, and C. W. Lee, Micro-bump Joining Technology for 3 Dimensional Chip Stacking,
J. Korean Soc. Precis. Eng. 31(10) (2014) 865–871. http://dx.doi.org/10.7736/KSPE.2014.31.10.865
[CROSSREF]
3. G. Kim, K. Son, G. T. Park, and Y. B. Park, Effect of Current Densities on the Electromigration Failure Mechanisms of Flip-Chip Sn-Ag Solder Bump, Korean J. Met. Mater. 55(11) (2017) 798–805. https://doi.org/10.3365/KJMM.2017.55.11.798
4. J.M. Park, S. H. Kim, M. H. Jeong, M. Hand, and Y. B. Park, Effect of Cu-Sn intermetallic compound reactions on the Kirkendall void growth characteristics in Cu/Sn/Cu microbumps,
Jpn. J. Appl. Phys. 53 (2014) 1–4.
[CROSSREF]
5. G. Ross, V. Vuorinen, and M. P-. Krokel, Void formation and its impact on Cu-Sn intermetallic compound formation,
J. Alloy. Compd. 677 (2016) 127–138. https://doi.org/10.1016/j.jallcom.2016.03.193
[CROSSREF]
6. J.H. Lee, N. H. Kang, C. W. Lee, and J. H. Kim, Necessity of Low Melting Temperature Pb-free Solder Alloy and Characteristics of Representative Alloys, J. Koran Weld. Join. Soc. 24(2) (2006) 17–28.
7. S. Jin, N. Kang, K. Cho, C. Lee, and W. Hong, Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering,
J. Koran Weld. Join. Soc. 30(2) (2012) 169–173. http://dx.doi.org/10.5781/KWJS.2012.30.2.169
[CROSSREF]
8. C.Y. Kang, Research Trend in Development of Pb Free Solder, J. Koran Weld. Join. Soc. 13(4) (1995) 1–6.
9. W. Yang, R. W. Messler, and L.E. Felton, Microstructure Evolution of Eutectic Sn-Ag Solder Joints,
J. Electron. Mater. 23 (1994) 765–772. https://doi.org/10.1007/BF02651371
[CROSSREF]
10. Y. Wang, K. H. Lu, V. Gupta, L. Stiborek, D. Shirley, S. H. Chae, J. Im, and P. S. Ho, Effects of Sn grain structure on the electromigration of Sn-Ag solder joints,
J. Mater. Res. 27(8) (2012) 1131–1141. https://doi.org/10.1557/jmr.2012.10
[CROSSREF]
11. S.H. Kim, B. R. Lee, G. T. Park, J. M. Kim, S, H. Yoo, and Y. B. Park, Effects of PCB surface finishes on the Mechanical and Electrical Reliabilities of Sn-0.7Cu Pb-free Solder Bump,
J. Microelectron. Packag. Soc. 53(10) (2015) 735–744. https://doi.org/10.6117/kmeps.2012.19.4.057
[CROSSREF]
12. Y. Kim, J. Kwon, D. Yoo, S. Park, D. Lee, and D. Lee, Influence of Nickel Thickness and Annealing Time on the Mechanical Properties of Intermetallic Compounds Formed between Cu-Sn Solder and Substrate, Korean J. Met. Mater. 55(3) (2017) 165–172. https://doi.org/10.3365/KJMM.2017.55.3.165
13. S.K. Lim, Physical Design for 3D System on Package,
IEEE Design and Test of Computers. 22(6) (2005) 532–539. https://doi.org/10.1109/MDT.2005.149
[CROSSREF]
14. M. Dong, F. Santagata, R. Sokolovskij, J. Wei, C. Yuan, and G. Zhang, 3D system-in-package design using stacked silicon submount technology, Microelectron, Int. 32(2) (2015) 63–72. https://doi.org/10.1108/MI.11.2014.0050
15. J.H. Lan, Evolution and Outlook of TSV and 3D IC/Si Integration,
2010 12th Electronics Packaging Technology Conference Singapore. (2010) https://doi.org/10.1109/EPTC.2010.5702702
[CROSSREF]
16. B.H.L. Chao, X. Zhang, S. H. Chae, and P. S. Ho, Recent advances on kinetic analysis of electromigration enhanced intermetallic growth and damage formation in Pb-free solder joints,
Microelectron. Reliab. 49(3) (2009) 253–263. https://doi.org/10.1016/j.microrel.2009.01.006
[CROSSREF]
17. S. Baek, Y. Park, C. Oh, E. Chun, and N. Kang, Modeling and Experimental Verification of Intermetallic Compounds Grown by Electromigration and Thermomigration for Sn-0.7Cu Solders,
J. Electron. Mater. 48(1) (2019) 142–151. https://doi.org/10.1007/s11664-018-6786-4
[CROSSREF]
18. S. Li, X. Wang, Z. Liu, Y. Jin, S. Zhang, J. Geng, X. Chen, S. Wu, P. He, and W. Long, Corrosion behavior of Sn-based lead-free solder alloys:a review,
J. Mater. Sci. 31 (2020) 9076–9090. https://doi.org/10.1007/s10854-020-03540-2
[CROSSREF] [PDF]
19. P. Zhang, S. Xue, J. Wang, P. Xue, S. Zhong, and W. Long, Effect of Nanoparticles Addition on the Micro- structure and Properties of Lead-Free Solders:A Review,
Appl. Sci. 9(10) (2019) 1–20. https://doi.org/10.3390/app9102044
[CROSSREF]
20. J. Lee, K. Kim, and S. Huh, Development of Sn-Zn Based Low Temperature Lead-Free Solder for Improvement of Oxidation Resistance,
J. Korean Weld. Join. Soc. 29(5) (2011) 514–521. http://dx.doi.org/10.5781/KWJS.2011.29.5.514
[CROSSREF]
21. J. Lee, K. Kim, M. Inoue, J. Jiang, and K. Suganuma, Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn-Zn eutectic alloy,
J. Alloy. Compd. 454 (2008) 310–320. https://doi.org/10.1016/j.jallcom.2006.12.037
[CROSSREF]
22. R. Darveaux and K. Banerji, Constitutive Relations for Tin-Based-Solder Joints,
IEEE Trans. Compon. Hybirds. Manuf. Technol. 15(6) (1992) 1013–1024. https://doi.org/10.1109/33.206925
[CROSSREF]
23. I. Artaki, A. M. Jackson, and P. T. Vianco, Evaluation of Lead-Free Solder Joints in Electronic Assemblies,
J. Electron. Mater. 23(8) (1994) 757–764. https://doi.org/10.1007/BF02651370
[CROSSREF] [PDF]
24. J.Y. Park, J. P. Jung, and C. S. Kang, The Analysis of the Withdrawal Force Curve of the Wetting Balance Curve,
IEEE Trans. Compon. Hybirds. Manuf. Technol. 22(3) (1999) 372–377. https://doi.org/10.1109/6144.796538
[CROSSREF]
25. M. Kim, K. Shin, and J. Jung, Research Trends of Sn- Ag Based Pb-Free Solders, J. Weld. Join. 19(1) (2001) 15–20.
26. P.T. Vianco and J. A. Rejent, Properties of Ternary Sn-Ag-Bi Solder Alloys:Part II—Wettability and Mechanical Properties Analyses,
J. Electron. Mater. 28(10) (1999) 1138–1143. https://doi.org/10.1007/s11664-999-0251-3
[CROSSREF]
27. J. Lee, H. Kim, Y. Lee, and Y. Choi, Interfacial Pro- perties with Kind of Surface Finish and Sn-Ag Based Lead-free Solder,
J. Korean Weld. Join. Soc. 27(1) (2009) 20–24. https://doi.org/10.5781/KWJS.2009.27.1.020
[CROSSREF]
28. K. Lee, K. Kim, and K. Suganuma, Electro-migration Phenomenon in Flip-chip Packages, J. Microelectron. Packag. Soc. 17(4) (2010) 11–17.
29. R.A. Islam, B. Y. Wu, M. O. Alam, Y. C. Chan, and W. Jillek, Investigations on microhardness of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder,
J. Alloy. Compd. 392 (2005) 149–158. https://doi.org/10.1016/j.jallcom.2004.08.079
[CROSSREF]
30. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K. N. Tu, Ductile-to-brittle transition in Sn-Zn solder joints measured by impact test,
Scr. Mater. 51 (2004) 641–645. https://doi.org/10.1016/j.scriptamat.2004.06.027
[CROSSREF]
31. P. Xue, S. Xue, Y. Shen, and H. Zhu, Interfacial microstructures and mechanical properties of Sn-9Zn-0.5Ga- xNd on Cu substrate with aging treatment,
Mater. Des. 60 (2014) 1–6. http://dx.doi.org/10.1016/j.matdes.2014.03.052
[CROSSREF]
32. R.S. Lai, K. L. Lin, and B. Salam, Suppressing Growth of the Cu5Zn8 Intermetallic Layer in Sn-Zn-Ag- Al-Ga/Cu Solder Joints,
J. Electron. Mater. 38(1) (2009) 88–92. https://doi.org/10.1007/s11664-008-0579-0
[CROSSREF]
33. X.F. Zhang and J. D. Guo, Reverse polarity effect from effective charge disparity during electromigration in eutectic Sn-Zn solder interconnect,
J. Mater. Res. 23(12) (2008) 3370–3378. https://doi.org/10.1557/JMR.2008.0413
[CROSSREF]
34. M.L. Huang, Q. Zhou, N. Zhao, X. Y. Lin, and Z. J. Zhang, Reverse polarity effect and cross-solder interaction in Cu/Sn-9Zn/Ni interconnect during liquid-solid electromigration,
J. Mater. Sci. 49 (2014) 1755–1763. https://doi.org/10.1007/s10853-013-7862-z
[CROSSREF]
35. M. Huang, Z. Zhang, N. Zhao, and X. Feng, Reverse Polarity Effect in Cu/Sn-9Zn/Ni Interconnect under High Current Density at High Temperature,
2014 15th International Conference on Electronic Packaging Technology, Chengdu China. (2014) https://doi.org/10.1109/ICEPT.2014.6922690
[CROSSREF]
36. M.L. Huang, Z. J. Zhang, N. Zhao, and Q. Zhou, A synchrotron radiation real-time in situ imaging study on the reverse polarity effect in Cu/Sn-9Zn/Cu interconnect during liquid-solid electromigration,
Scr. Mater. 68 (2013) 853–856. http://dx.doi.org/10.1016/j.scriptamat.2013.02.007
[CROSSREF]
37. S. Kuo and K. Lin, Polarity effect of electromigration on intermetallic compound formation in a Cu/Sn-9Zn/ Cu sandwich,
J. Mater. Res. 23(4) (2008) 1087–1094. https://doi.org/10.1557/jmr.2008.0142
[CROSSREF]
38. M. Zhao, L. Zhang, Z. Lin, M. Xiong, and L. Sun, Struc- ture and properties of Sn-Cu lead-free solders in electronics packaging,
Sci. Technol. Adv. Mater. 29 (2019) 421–444. https://doi.org/10.1080/14686996.2019.1591168
[CROSSREF] [PDF]
39. F. Hung, T. Lui, L. Chen, and N. He, Resonant characteristics of the microelectronic Sn-Cu solder,
J. Alloy Compd. 457 (2008) 171–176. https://doi.org/10.1016/j.jallcom.2007.03.026
[CROSSREF]
40. L. Yang, Y. Zhang, J. Dai, Y. Jing, J. Ge, and N. Zhang, Microstructure, interfacial IMC and mechanical properties of Sn-0.7Cu-
xAl (
x =0-0.075) lead-free solder alloy,
Mater. Des. 67 (2015) 209–216. http://dx.doi.org/10.1016/j.matdes.2014.11.036
[CROSSREF]
41. A.A. El-Daly and A. E. Hammad, Enhancement of creep resistance and thermal behavior of eutectic Sn-Cu lead-free solder alloy by Ag and In-additions,
Mater. Des. 40 (2012) 292–298. http://dx.doi.org/10.1016/j.matdes.2012.04.007
[CROSSREF]
42. M. Heo, N. Kang, S. Park, J. Kim, and W. S. Hong, Kinetics of Intermetallic Compounds Growth Induced by Electromigration of Sn-0.7Cu Solder,
Korean J. Met. Mater. 54(12) (2016) 908–915. https://doi.org/10.3365/KJMM.2016.54.12.908
[CROSSREF]
43. H. Lee and Y. Chen, Evolution of Ag3Sn intermetallic compounds during solidification of eutectic Sn-3.5Ag solder,
J. Alloy. Compd. 509 (2011) 2510–2517. https://doi.org/10.1016/j.jallcom.2010.11.068
[CROSSREF]
44. B. Guo, A. Kunwar, N. Zhao, J. Chen, Y. Wang, and H. Ma, Effect of Ag3Sn nanoparticles and temperature on Cu
6Sn
5 IMC growth in Sn
xAg/Cu solder joints,
Mater. Res. Bull. 99 (2018) 239–248. https://doi.org/10.1016/j.materresbull.2017.11.022
[CROSSREF]
45. Y. Jun and J. Yu, Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints, J. Appl. Phys. 115 (2014) (083708) 1–9. https://doi.org/10.1063/1.4867115
46. Y. Park, J. Bang, C. M. Oh, W. S. Hong, and N. Kang, The Effect of Eutectic Structure on the Creep Properties of Sn-3.0Ag-0.5Cu and Sn-8.0Sb-3.0Ag Solders,
Met. 7(12) (2017) 5401–12. https://doi.org/10.3390/met7120540
[CROSSREF]
47. A.T. Tan, A. W. Tan, and F. Yusof, Evolution of microstructure and mechanical properties of Cu/SAC305/Cu solder joints under the influence of low ultrasonic power,
J. Alloy. Compd. 705 (2017) 188–197. http://dx.doi.org/10.1016/j.jallcom.2017.02.165
[CROSSREF]
48. M.Z. Yahaya, N. A. Salleh, S. Kheawhom, B. Illes, M. F. M. Nazeri, and A. A. Mohamad, Selective etching and hardness properties of quenched SAC305 solder joints,
Solder. Surf. Mount Technol. 32(4) (2020) 225–233. https://doi.org/10.1108/SSMT-01-2020-0001
[CROSSREF]
49. S. Kim, G. Park, B. Lee, J. Kim, S. Yoo, and Y. Park, Effects of PCB Surface Finishes on in-situ Interme- tallics Growth and Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints,
J. Microelectron. Packag. Soc. 22(2) (2015) 47–53. http://dx.doi.org/10.6117/kmeps.2015.22.2.047
[CROSSREF]
50. J. Choi, S. Jun, H. Won, B. Jung, and T. Oh, Electro- migration Behavior of Flip-Chip Bonded Sn-3.5Ag- 0.5Cu Solder Bumps, J. Microelectron. Packag. Soc. 11(4) (2004) 43–48.
51. K. Kim, W. Seo, S. Kwon, J. Kim, J. Yoon, and S. Yoo, Effects of Ni-P Bath on the Brittle Fracture of Sn-Ag-Cu Solder/ENEPIG Solder Joint,
J. Weld. Join. 35(3) (2017) 1–6. https://doi.org/10.5781/JWJ.2017.35.3.1
[CROSSREF]
52. S. Huh, J. Lee, and S. Ham, Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish:1. Effects of thickness and roughness of electroless Ni-P deposit,
J. Microelectron. Packag. Soc. 21(3) (2014) 43–50. http://dx.doi.org/10.6117/kmeps.2014.21.3.043
[CROSSREF]
53. J. Yoon, B. Noh, and S. Jung, Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint,
J. Electron. Mater. 40(9) (2011) 1950–1955. https://doi.org/10.1007/s11664-011-1686-x
[CROSSREF]
54. J. Yoon, J. Bang, C. Lee, and S. Jung, Interfacial reaction and intermetallic compound formation of Sn-1Ag/ENIG and Sn-1Ag/ENEPIG solder joints,
J. Alloy. Compd. 627 (2015) 276–280. http://dx.doi.org/10.1016/j.jallcom.2014.11.208
[CROSSREF]
55. C. Ho and J. Duh, Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu-Sn intermetallic compounds in soldering reaction, Mater,
Chem. Phys. 148 (2014) 21–27. http://dx.doi.org/10.1016/j.matchemphys.2014.06.072
[CROSSREF]
56. J. Back, S. Yoo, D. Han, S. Jung, and J. Yoon, Interfacial Reactions and Mechanical Strength of Sn-3.0Ag-0.5Cu/0.1㎛-Ni Thin ENEPIG Solder Joints,
J. Weld. Join. 35(6) (2017) 51–58. https://doi.org/10.5781/JWJ.2017.35.6.8
[CROSSREF]
57. J. Kim, S. Jung, and J. Yoon, Effect of Ni(P) thickness in Au/Pd/Ni(P) surface finish on the electrical reliability of Sn-3.0Ag-0.5Cu solder joints during current-stressing,
J. Alloy. Compd. 850 (2021) (156729) 1–l11. https://doi.org/10.1016/j.jallcom.2020.156729
[CROSSREF]
58. J. Back, B. Lee, S. Yoo, D. Han, S. Jung, and J. Yoon, Solderability of thin ENEPIG plating Layer for Fine Pitch Package application,
J. Microelectron. Packag. Soc. 24(1) (2017) 83–90. https://doi.org/10.6117/kmeps.2017.24.1.083
[CROSSREF]