1. T.K. Han, K. Y. Lee, and J. S. Kim, Recent Deve- lopments and Weldability of Advanced High Strength Steels for Automotive Applications,
J. Korean Weld. Join. Soc. 27(2) (2009) 13–18. https://doi.org/10.5781/KWJS.2009.27.2.013
[CROSSREF]
2. K. Fahlström, K. A. Persson, J. K. Larsson, and E. V. Ferrer, Evaluation of Laser Weldability of 1800 and 1900 MPa Boron Steels,
J. Laser Appl. 28(2) (2016) 022426. https://doi.org/10.2351/1.4944102
[CROSSREF]
3. L. Lu, Z. Liang, J. Yang, Q. Sun, T. Zhu, and X. Wang, Investigation on Laser Welding of a Novel Hot-Stamped Steel With 2000 MPa,
J. Mater. Res. Technol. 9(6) (2020) 13147–13152. https://doi.org/10.1016/j.jmrt.2020.09.044
[CROSSREF]
4. M. Uchihara, Joining Technologies for Automotive Steel Sheets,
Weld. Int. 25(4) (2011) 249–259. https://doi.org/10.1080/09507111003655341
[CROSSREF]
5. C.H. Kim, J. K. Choi, M. J. Kang, and Y. D. Park, A Study on the CO2 Laser Welding Characteristics of High Strength Steel up to 1500 MPa for Automotive Application, J. Achiev. Mater. Manuf. 39(1) (2010) 79–86.
6. C. Kim, M. Kang, and Y. Park, Laser Welding of Al-Si Coated Hot Stamping Steel,
Procedia Eng. 10 (2011) 2226–2231. https://doi.org/10.1016/j.proeng.2011.04.368
[CROSSREF]
7. M. Kang, C. Kim, and J. Lee, Weld Strength of Laser- Welded Hot-Press-Forming Steel,
J. Laser Appl. 24(2) (2012) 022004. https://doi.org/10.2351/1.3699080
[CROSSREF]
8. M. Kang, C. Kim, and S. Bae, Laser Tailor-Welded Blanks for Hot-Press-Forming Steel with Arc Pretreat- ment,
Int. J. Automot. Technol. 16(2) (2015) 279–283. https://doi.org/10.1007/s12239-015-0029-y
[CROSSREF]
9. M. Kang, Y.-M. Kim, and C. Kim, Effect of Heating Parameters on Laser Welded Tailored Blanks of Hot Press Forming Steel,
J. Mater. Process. Technol. 228 (2016) 137–144. https://doi.org/10.1016/j.jmatprotec.2015.06.028
[CROSSREF]
10. S. Furusako, Y. Miyazaki, K. Hashimoto, and J. Kobayashi, Establishment of a Model Predicting Tensile Shear Strength and Fracture Portion of Laser-Welded Lap Joints,
Proceedings of International Congress on Laser Advanced Materials Processing (LAMP 2002). Osaka, Japan(2002) 197–202.
[CROSSREF]
11. T. Kitamura and T. Terasaki, Prediction of Static Fracture Strength of Laser-Welded Lap Joints by Numerical Analysis,
Weld. Int. 18(7) (2004) 524–530. https://doi.org/10.1533/wint.2004.3284
[CROSSREF]
12. J. Lee, K. Asim, and J. Pan, Modeling of Failure Mode of Laser Welds in Lap-Shear Specimens of HSLA Steel Sheets,
Eng. Fract. Mech. 78(2) (2011) 374–396. https://doi.org/10.1016/j.engfracmech.2010.10.011
[CROSSREF]
13. H. Huh and J. Ha, Failure Characterization of Laser Welds Under Combined Loading Conditions,
Int. J. Mech. Sci. 69 (2013) 40–58. https://doi.org/10.1016/j.ijmecsci.2013.01.022
[CROSSREF]
14. M. Kang, I. H. Jeon, H. Han, and C. Kim, Tensile- Shear Fracture Behavior Prediction of High-Strength Steel Laser Overlap Welds,
Met. 8(5) (2018) 365. https://doi.org/10.3390/met8050365
[CROSSREF]
15. M. Ono, M. Kabasawa, and M. Omura, Static and Fatigue Strength of Laser-Welded Lap Joints in Thin Steel Sheet,
Weld. Int. 11(6) (1997) 462–467. https://doi.org/10.1080/09507119709451995
[CROSSREF]
16. T.K. Han, B. G. Park, and C. Y. Kang, Hardening Characteristics of CO
2 Laser Welds in Advanced High Strength Steel,
Met. Mater. Int. 18(3) (2012) 473–479. https://doi.org/10.1007/s12540-012-3014-2
[CROSSREF]
17. S. Vignier, E. Biro, and M. Hervé, Predicting the Hardness Profile Across Resistance Spot Welds in Martensitic Steels,
Weld. World. 58(3) (2014) 297–305. https://doi.org/10.1007/s40194-014-0116-0
[CROSSREF]
18. I.H. Jeon, C. Kim, and J. D. Kim, Hardness Estimation of Laser Welded Boron Steel Welds with the Carbon Equivalent,
J. Weld. Join. 34(5) (2016) 1–5. https://doi.org/10.5781/JWJ.2016.34.5.1
[CROSSREF]
19. K. Andersen, G. E. Cook, G. Karsai, and K. Ramaswamy, Artificial Neural Networks Applied to Arc Welding Process Modeling and Control,
IEEE Trans. Ind. Appl. 26(5) (1990) 824–830. https://doi.org/10.1109/28.60056
[CROSSREF]
20. G.E. Cook, R. J. Barnett, K. Andersen, and A. M. Strauss, Weld Modeling and Control Using Artificial Neural Networks,
IEEE Trans. Ind. Appl. 31(6) (1995) 1484–1491. https://doi.org/10.1109/28.475745
[CROSSREF]
21. H.-S. Moon and S.-J. Na, A Neuro-Fuzzy Approach to Select Welding Conditions for Welding Quality Impro- vement in Horizontal Fillet Welding,
J. Manuf. Syst. 15(6) (1996) 392–403. https://doi.org/10.1016/S0278-6125(97)83053-1
[CROSSREF]
22. D. Kim and S. Rhee, Optimization of Arc Welding Process Parameters Using a Genetic Algorithm, Weld. J. 80(7) (2001) 184s–189s.
23. D. Kim and S. Rhee, Optimization of GMA Welding Process Using the Dual Response Approach,
Int. J. Prod. Res. 41(18) (2010) 4505–4515. https://doi.org/10.1080/0020754031000/595800
[CROSSREF]
24. K. Lee, S. Yi, S. Hyun, and C. Kim, Review on the Recent Welding Research with Application of CNN- Based Deep Learning Part I:Models and applications,
J. Weld. Join. 39(1) (2021) 10–19. https://doi.org/10.5781/JWJ.2021.39.1.1
[CROSSREF]
25. K. Lee, S. Yi, S. Hyun, and C. Kim, Review on the Recent Welding Research with Application of CNN- Based Deep Learning Part II:Model evaluation and visualizations,
J. Weld. Join. 39(1) (2021) 20–26. https://doi.org/10.5781/JWJ.2021.39.1.2
[CROSSREF]
26. D. Petković, Prediction of Laser Welding Quality by Computational Intelligence Approaches,
Optik. 140 (2017) 597–600. https://doi.org/10.1016/j.ijleo.2017.04.088
[CROSSREF]
27. K. Lee, S. Kang, M. Kang, S. Yi, S. Hyun, and C. Kim, Modeling of Laser Welds Using Machine Learning Algorithm Part I: Penetration Depth for Laser Overlap Al/Cu Dissimilar Metal Welds,
J. Weld. Join. 39(1) (2021) 27–35. https://doi.org/10.5781/JWJ.2021.39.1.3
[CROSSREF]