1. K. Andersen, G. E. Cook, G. Karsai, and K. Ramaswamy, Artificial Neural Networks Applied to Arc Welding Process Modeling and Control,
IEEE Trans. Ind. Appl. 26(5) (1990) 824–830. https://doi.org/10.1109/28.60056
[CROSSREF]
2. K.Bae. and S.-J. Na, A Study of Vision-Based Measure- ment of Weld Joint Shape Incorporating the Neural Network,
Proc. Inst. Mech. Eng., Part B:J. Eng. Manuf. 208(1) (1994) 61–69. https://doi.org/10.1243/PIME_PROC_1994_208_060_02
[CROSSREF] [PDF]
3. G.E. Cook, R. J. Barnett, K. Andersen, and A. M. Strauss, Weld Modeling and Control Using Artificial Neural Networks,
IEEE Trans. Ind. Appl. 31(6) (1995) 1484–1491. https://doi.org/10.1109/28.475745
[CROSSREF]
4. H.S. Moon and S. J. Na, A Neuro-Fuzzy Approach to Select Welding Conditions for Welding Quality Impro- vement in Horizontal Fillet Welding,
J. Manuf. Syst. 15(6) (1996) 392–403. https://doi.org/10.1016/S0278-6125(97)83053-1
[CROSSREF]
5. K. Lee, S. Yi, S. Hyun, and C. Kim, Review on the Recent Welding Research With Application of CNN- Based Deep Learning - Part I:Models and Applications,
J. Weld. Join. 39(1) (2021) 10–19. https://doi.org/10.5781/JWJ.2021.39.1.1
[CROSSREF]
6. A. Khumaidi, E. M. Yuniarno, and M. H. Purnomo, Welding Defect Classification Based on Convolution Neural Network (CNN) and Gaussian Kernel,
Inter- national Seminar on Intelligent Technology and Its Applications (ISITIA). Surabaya, Indonesia(2017) 2 61–265. https://doi.org/10.1109/ISITIA.2017.8124091
[CROSSREF]
7. S. Choi, I. Hwang, Y. Kim, B. Kang, and M. Kang, Prediction of the Weld Qualities Using Surface App- earance Image in Resistance Spot Welding,
Met. 9(8) (2019) 831. https://doi.org/10.3390/met9080831
[CROSSREF]
8. B. Zhang, K.-M. Hong, and Y. C. Shin, Deep-Learning- Based Porosity Monitoring of Laser Welding Process,
Manuf. Lett. 23 (2020) 62–66. https://doi.org/10.1016/j.mfglet.2020.01.001
[CROSSREF]
9. T. Ashida, A. Okamoto, K. Ozaki, M. Hida, and T. Yamashita, Development of Image Sensing Technology for Automatic Welding (Image Recognition by Deep Learning), Kobelco Technol. Rev. 37 (April., 2019) 77–81.
10. C.V. Dung, H. Sekiya, S. Hirano, T. Okatani, and C. Miki, A Vision-Based Method for Crack Detection in Gusset Plate Welded Joints of Steel Bridges Using Deep Convolutional Neural Networks,
Autom. Constr. 102 (2019) 217–229. https://doi.org/10.1016/j.autcon.2019.02.013
[CROSSREF]
11. Y. Zhang, D. You, X. Gao, N. Zhang, and P. P. Gao, Welding Defects Detection Based on Deep Learning with Multiple Optical Sensors During Disk Laser Welding of Thick Plates,
J. Manuf. Syst. 51 (2019) 87–94. https://doi.org/10.1016/j.jmsy.2019.02.004
[CROSSREF]
12. D. Bacioiu, G. Melton, M. Papaelias, and R. Shaw, Auto- mated Defect Classification of Aluminium 5083 TIG Welding Using HDR Camera and Neural Networks,
J. Manuf. Process. 45 (2019) 603–613. https://doi.org/10.1016/j.jmapro.2019.07.020
[CROSSREF]
13. H. Zhu, W. Ge, and Z. Liu, Deep Learning-Based Classi- fication of Weld Surface Defects,
Appl. Sci. 9(16) (2019) 3312. https://doi.org/10.3390/app9163312
[CROSSREF]
14. W. Jiao, Q. Wang, Y. Cheng, and Y. Zhang, End-To-End Prediction of Weld Penetration:A Deep Learning and Transfer Learning Based Method, J. Manuf. Process. (2020) In-Press, Available online 4 February 2020https://doi.org/10.1016/j.jmapro.2020.01.044
15. Z. Zhang, G. Wen, and S. Chen, Weld Image Deep Lear- ning-Based On-Line Defects Detection Using Convo- lutional Neural Networks for Al Alloy in Robotic Arc Welding,
J. Manuf. Process. 45 (2019) 208–216. https://doi.org/10.1016/j.jmapro.2019.06.023
[CROSSREF]
16. Y. Yang, L. Pan, J. Ma, R. Yang, Y. Zhu, Y. Yang, and L. Zhang, A High-Performance Deep Learning Algorithm for the Automated Optical Inspection of Laser Welding,
Appl. Sci. 10(3) (2020) 933. https://doi.org/10.3390/app10030933
[CROSSREF]
17. Z. Guo, S. Ye, Y. Wang, and C. Lin, Resistance Welding Spot Defect Detection with Convolutional Neural Networks,
Proceeding of International Conference on Computer Vision Systems. Thessaloniki, Greece(2017) 169–174. https://doi.org/10.1007/978-3-319-68345-4_15
[CROSSREF]
18. N. Yang, H. Niu, L. Chen, and G. Mi, X-ray Weld Image Classification Using Improved Convolutional Neural Network,
AIP Conference Proceedings. (1995) 2018 020035. https://doi.org/10.1063/1.504∾
[CROSSREF]
19. J.K. Park, W. H. An, and D. J. Kang, Convolutional Neural Network Based Surface Inspection System for Non-patterned Welding Defects,
Int. J. Precis. Eng. Manuf. 20(3) (2019) 363–374. https://doi.org/10.1007/s12541-019-00074-4
[CROSSREF]
20. W. Hou, Y. Wei, Y. Jin, and C. Zhu, Deep Features Based on a DCNN Model for Classifying Imbalanced Weld Flaw Types,
Meas. 131 (2019) 482–489. https://doi.org/10.1016/j.measurement.2018.09.011
[CROSSREF]
21. Z. Zhang, B. Li, W. Zhang, R. Lu, S. Wada, and Y. Zhang, Real-Time Penetration State Monitoring Using Convolutional Neural Network for Laser Welding of Tailor Rolled Blanks,
J. Manuf. Syst. 54 (2020) 348–360. https://doi.org/10.1016/j.jmsy.2020.01.006
[CROSSREF]
22. A. Muniategui, B. Hériz, L. Eciolaza, M. Ayuso, A. Iturrioz, and P. Quintana, lvarez, Spot Welding Monitoring System Based on Fuzzy Classification and Deep Learning, Proceeding of 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) Naples, Italy. (2017) 1–6. https://doi.org/10.1109/fuzz-ieee.2017.8015618
23. A.C. Müller and S. Guido, Introduction to Machine Learning with Python:A Guide for Data Scientists, O'Reilly Media, Inc. California, USA(2016)
24. R.M. Haralick, K. Shanmugam, and I. H. Dinstein, Textural Features for Image Classification,
IEEE Trans. Syst. Man. Cybern SMC-3. 6 (1973) 610–621. https://doi.org/10.1109/TSMC.1973.4309314
[CROSSREF]