1. Zacharia T, David S. A, Vitek J. M, Debroy T. Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel, Part I- Theoretical Analysis. Weld. J. 68 (12) (1989), 499s–509s
2. Kaplan A. A Model of Deep Penetration Laser Welding Based on Calculation of the Keyhole Profile.
J. Phys. D:Appl. Phys. 27 (9) (1994), 1805–1814 https://doi.org/10.1088/0022-3727/27/9/002
[CROSSREF]
3. Solana P, Ocaña J. L. A Mathematical Model for Penetration Laser Welding as a Free-Boundary Problem.
J. Phys. D:Appl. Phys. 30 (9) (1997), 1300–1313 https://doi.org/10.1088/0022-3727/30/9/005
[CROSSREF]
4. Kaplan A. F. H, Mizutani M, Katayama S, Matsunawa A. Unbounded Collapse Keyhole and Bubble Formation During Pulsed Laser Interaction with Liquid, Zinc.
J. Phys. D:Appl. Phys. 35 (2002), 1218–1228 https://doi.org/10.1088/0022-3727/35/11/319
[CROSSREF]
5. Mahrle A, Schmidt J. The Influence of Fluid Flow Phenomena on the Laser Beam Welding Process.
Int. J. Heat Fluid Fl. 23 (2002), 288–297 https://doi.org/10.1016/S0142-727X(02)00176-5
[CROSSREF]
6. Ki H, Mazumder J, Mohanty P. S. Modeling of laser keyhole welding Part I, mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution.
Metall. Mater. Trans. A. 33 (6) (2002), 1817–1830 https://doi.org/10.1007/s11661-002-0190-6
[CROSSREF] [PDF]
7. Lee J. Y, Ko S. H, Farson D. F, Yoo C. D. Mechanism of keyhole formation and stability in stationary laser welding.
Phys J. D:Appl. Phys. 35 (13) (2002), 1570–1576 https://doi.org/10.1088/0022-3727/35/13/320
[CROSSREF]
8. Cho J. H, Na S. J. Implementation of Real-Time Multiple Reflection and Fresnel Absorption of Laser Beam in Keyhole.
J. Phys. D:Appl. Phys. 39 (2006), 5372–5378 https://doi.org/10.1088/0022-3727/39/24/039
[CROSSREF]
9. Cho J. H, Na S. J. Theoretical Analysis of Keyhole Dynamics in Laser Drilling Considering the Polarization of Laser.
J. Phys. D:Appl. Phys. 40 (2007), 7638–7647 https://doi.org/10.1088/0022-3727/40/24/007
[CROSSREF]
10. Cho W. I, Cho J. H, Cho M. H, Lee J. B, Na S. J. Numerical Simulation Bubble of and Pore Generation by Molten Metal Flow in Laser-GMA Hybrid, Welding.
J. Weld. Join. 26 (6) (2008), 67–73 https://doi.org/10.5781/KWJS.2008.26.6.067
[CROSSREF] [PDF]
11. Cho W. I, Na S. J, Cho M. H, Lee J. S. Numerical Study of Alloying Element Distribution in CO
2, Hybrid Laser- GMA Welding.
Comput. Mater. Sci. 49 (4) (2010), 792–800 https://doi.org/10.1016/j.commatsci.2010.06.025
[CROSSREF]
12. Cho W. I, Na S. J, Thomy C, Vollertsen F. Numerical simulation of molten pool dynamics in high power disk laser welding.
J. Mater. Process. Technol. 212 (2012), 262–275 https://doi.org/10.1016/j.jmatprotec.2011.09.011
[CROSSREF]
13. Cho W. I, Schultz V, Woizeschke P. Numerical study of the effect of the oscillation frequency in buttonhole welding.
J. Mater. Process. Technol. 261 (2018), 202–212 https://doi.org/10.1016/j.jmatprotec.2018.05.024
[CROSSREF]
14. Cho W. I, Woizeschke P. Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal.
Int. J. Heat Mass Trans. 152 (2020), 119528https://doi.org/10.1016/j.ijheatmasstransfer.2020.119528
[CROSSREF]
15. Cho M. H, Farson D. F. Simulation Study of a Hybrid Process for the Prevention of Weld Bead, Formation Hump. Weld. J. 86 (9) (2007), 253s–262s
16. Cho J. H, Na S. J. Three-Dimensional Analysis of Molten Pool in GMA-Laser Hybrid, Welding. Weld. J. 88 (2) (2009), 35s–43s
17. Kawahito Y, Matsumoto N, Abe Y, Katayama S. Laser absorption characteristics in high-power fibre laser welding of stainless steel.
Weld. Int. 27 (2) (2013), 129–135 https://doi.org/10.1080/09507116.2011.606151
[CROSSREF]
18. Cho W. I. Ph. D. dissertation, A Numerical Study on Molten Pool Behavior in Laser-Arc Hybrid Welding Process. KAIST Daejeon, Korea. (2012), 48–111