1. J.H. Lau. Flip Chip Technologies. (1996), New York, USA: McGraw Hill.
2. L.T. Manzione. Plastic Packaging of Microelectronic Devices. (1990), New York, USA: Van Nostrand Reinhold.
3. A. Sharma, Y.-J. Jang, J.B. Kim, and J.P. Jung, Thermal cycling, shear and insulating characteristics of epoxy embedded Sn-3.0Ag-0.5Cu (SAC305) solder paste for automotive applications,
J. Alloy. Compd. (2017) 704 795–803.
https://doi.org/10.1016/j.jallcom.2017.02.036
[CROSSREF]
9. A. Sharma, SJ. Lee, DY. Choi, and JP. Jung, Effect of brazing current and speed on the bead characteristics, microstructure, and mechanical properties of the arc brazed galvanized steel sheets,
J. Mater. Proc. Technol. (2017) 249 212–220.
https://doi.org/10.1016/j.jmatprotec.2017.05.026
[CROSSREF]
11. J. Liu. When Can We Use Conductive Adhesives in Volume Production-An Overview of Advances of Conductive Adhesive Joining Technology in Electronics Applications. Proc. International Seminar on Conductive Adhesive in Electronics Packaging. (1995), Netherlands: Eindhoven; 5 p. 225–234
14. E. Sancaktar and Y. Wei. In : Van Ooij W.J, Anderson H, editors. Electronically Conductive Adhesives, Conduction Mechanisms, Mechanical Behavior and Durability, In Mittal Festschrift on Adhesion Science and Technology. (1998), VSP; Utrecht, The Netherlands:
15. B.T. Alpert and A.J. Schoenberg, Conductive adhesives as a soldering alternative, Electron. Packag. Prod. (1991) 31 130–132.
16. J.C. Bolger, J.M. Sylva, and J.F. McGovern, Conductive epoxy adhesives to replace solder, Surf. Mount Technol. (1992) 6 66–70.
17. A. Sharma, S. Das, and K. Das, In : Mohamed A.M.A, editor. Pulse Electrodeposition of Lead-Free Tin-Based Composites for Microelectronic Packaging, In Electrodeposition of Composite Materials,
Tech: Croatia. (2016)
https://doi.org/10.5772/62036
[CROSSREF]
18. A. Sharma, S. Das, and K. Das, In : Aliofkhazraei M, editor. Pulse Electroplating of Ultrafine Grained Tin Coating, In Electroplating of Nanostructures,
Intech: Croatia. (2015)
https://doi.org/10.5772/61255
[CROSSREF]
19. H.Y. Lee, A. Sharma, S.H. Kee, Y.W. Lee, J.T. Moon, and J.P. Jung, Effect of aluminium additions on wettability and intermetallic compound (IMC) growth of lead free Sn-2 wt. %Ag-5 wt. %Bi soldered joints,
Electron. Mater. Lett. (2014) 10 997–1004.
https://doi.org/10.1007/s13391-014-3364-7
[CROSSREF]
20. Z. Xu, A. Sharma, S.J. Lee, and J.P. Jung, Effect of soldering temperature on wetting and optical density of dip coated Sn and Sn-3.5 Ag solders,
Mater. Manuf. Process. (2015) 30(1) 127–132.
[CROSSREF]
21. A.K. Srivastava and A. Sharma, Advances in joining and welding technologies for automotive and electronic applications,
American Journal of Materials Engineering and Technology. (2017) 5(1) 7–13.
https://doi.org/10.12691/materials-5-1-2
[CROSSREF]
25. A. Sharma, A.K. Srivastava, and B. Ahn, Microstructure, mechanical properties, and drop reliability of CeO2 reinforced Sn-9Zn composite for low temperature soldering,
Mater. Res. Exp. (2019) 6 056520.
https://doi.org/10.1088/2053-1591/ab0225
[CROSSREF]
27. K.J. Puttlitz and K.A. Stalter. Handbook of Lead-Free Solder Technology for Microelectronic Assemblies. (2004), 1st edition. Taylor and Francis, New York, USA: CRC Press.
32. G. Nguyen, J. Williams, and F. Gibson. Conductive Adhesives:Reliable and Economical Alternatives to Solder Paste for Electrical Applications. In Proceeding of ISHM. 1992), (October., San Francisco, CA, USA: p. 510–517
35. Global Electronic Adhesives Market 2017-2021. Tech- navio Research. (2017), Technavio:
37. Fluid Dispensing Systems Market Size, Share &Trend Analysis Report By Product (Flux, Lubricant, Solder Paste, Adhesives &Sealants, Conformal Coatings) By Application (Semiconductor Packaging, Printed Circuit Board, Medical Devices, Automotive, Construction) And Segment Forecasts, 2018-2024, Published Oct 2016, ID:GVR-1-68038-147-4, 1-93.
42. J. Gurland, An estimate of contact and continuity of dispersions in opaque samples, Trans. Metall. Soc. AIME. (1966) 236 642–646.
46. L. Li and J.E. Morris, An Introduction to Electrically Conductive Adhesives, Int. J. Microelectronics Packaging. (1998) 1 6–31.
47. S. Choi, S.-I. Han, D. Kim, T. Hyeon, and D.-H. Kim,
High-performance stretchable conductive nanocomposites, materials, processes, and device applications, Chemical Society Reviews. (2019) 48(6) 1566–1595.
https://doi.org/10.1039/c8cs00706c
48. Z. Li, T. Le, Z. Wu, Y. Yao, L. Li, M. Tentzeris, K.-S. Moon, and C. P. Wong, Rational design of a printable, highly conductive silicone-based electrically conductive adhesive for stretchable radio-frequency antennas,
Adv. Funct. Mater. (2015) 25 464–470.
https://doi.org/10.1002/adfm.201403275
[CROSSREF]
51. S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S. W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon, and D. H. Kim, Highly conductive, stretchable and biocompatible Ag-Au core- sheath nanowire composite for wearable and implantable bioelectronics,
Nat. Nanotechnol. (2018) 13 1048–1056.
https://doi.org/10.1038/s41565-018-0226-8
[CROSSREF] [PUBMED] [PDF]
52. Y. Cheng, S. Wang, R. Wang, J. Sun, and L. Gao, Copper nanowire based transparent conductive films with high stability and superior stretchability,
J. Mater. Chem. C. (2014) 2 5309–5316.
https://doi.org/10.1039/C4TC00375F
[CROSSREF]
53. E. S. Bhagavatheswaran, M. Parsekar, A. Das, H. H. Le, S. Wiessner, K. W. Sto¨ckelhuber, G. Schmaucks, and G. Heinrich, Construction of an interconnected nanostructured carbon black network:development of highly stretchable and robust elastomeric conductors,
J. Phys. Chem. C. (2015) 119 21723–21731.
https://doi.org/10.1021/acs.jpcc.5b06629
[CROSSREF]
54. L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, Stretcha- ble, porous, and conductive energy textiles,
Nano Lett. (2010) 10 708–714.
https://doi.org/10.1021/nl903949m
[CROSSREF] [PUBMED]
55. Y. R. Jeong, H. Park, S. W. Jin, S. Y. Hong, S.-S. Lee, and J. S. Ha, Highly stretchable and sensitive strain sensors using fragmentized graphene foam,
Adv. Funct. Mater. (2015) 25 4228–4236.
https://doi.org/10.1002/adfm.201501000
[CROSSREF]
57. M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang, and C. Li, Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane),
Adv. Funct. Mater. (2014) 24 7548–7556.
https://doi.org/10.1002/adfm.201401886
[CROSSREF]
58. Y. G. Seol, T. Q. Trung, O.-J. Yoon, I.-Y. Sohn, and N.-E. Lee, Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes,
J. Mater. Chem. (2012) 22(45) 23759.
https://doi.org/10.1039/C2JM33949H
[CROSSREF]