용사기술의 기본원리 및 응용

김병문·황순영

Principles and Applications of Thermal Spraying Techniques

Byung Moon Kim and Soon Young Hwang

1. 용사기술의 기본원리

1.1 용사기술

기술학습의 역사상, 기술에 사용되는 재료개발의 역사이다. 최근 고도의 복합형 기술은, 여러 가지 기능을 가지는 재료를 필요로 하고 있다. 단일소재로 다양한 기능을 발휘하는 재료를 제작하는 것은 어려운 일이지만, 소재가 가지고 있는 특성을 살리면서 재료별에 코팅이 가능하다면, 단일소재의 결합을 보완할 수 있으며, 새로운 기능을 부여할 수 있다. 상기의 대응책으로 현재 다양한 표면처리법이 개발되고 있으며, 표면처리법 중 하나인 용사법은 산업현장에 걸쳐 폭넓게 이용되고 있다.

용사(Thermal spray, 溶射)란 분말 혹은 선풍재료를 가스의 연소 및 방전에 의한 고온열원에 혼합하여 용융입자로 변화시키고, 고속으로 모래에 충돌시키는 공기 용량하는 기술로, Fig. 1에 용사처리의 개략도를 나타내었다. 재료의 가열 및 용융을 위하여 에너지 밀도가 높은 연소화학, Arc 및 플라즈마 등의 열원을 필요로 한다. 용사는 성질이 다른 재료를 기재표면에 코팅 하는 기술로 소재의 특성을 살리고 결합을 보완할 수 있으며, 재료기술의 다양화 및 고도화를 가능하게 하는 표면처리법이다. 용사를 이용하면 고속으로 두께를 코팅이 가능하며 금속, 세라믹, 유리 및 플라스틱 등의 재료를 사용할 수 있다. 그리고, 재료의 종류 및 용사 공정의 특화적 특성을 이용하면, 다른 표면처리 방법으로 얻을 수 없는 표면 특성을 만들어 낼 수 있다. 제품의 고급화 및 재현성을 위하여 용사법, 시스템, 용사공정, 사용된 재료 및 코팅특성에 대한 이해가 요구된다.

1.2 코팅특성

표면처리법 혹은 표면처리법은 도금 및 융용부착법 등의 슬립법, CVD, PVD(전공증착, Sputtering) 등의 전조법이 있지만, 용사법은 다음과 같은 특성을 가지고 있다.

(1) 코팅속도가 빠르고, 두께를 코팅이 가능하다: 코팅 두께의 한계는 입자의 전유용력과 입자간의 결합력 대비에 의해 결정된다. 입자간의 결합력이 전유용력에 상쇄하면 코팅이 파괴된다. 현재, 전유용력의 대용기술이 발달하여 10mm 이상의 코팅도 가능하다.

(2) 코팅에 이용되는 재료의 자유도가 크다: 금속, 합금, 금속간화합물, 세라믹 및 플라스틱 등의 재료가 이용되며, 표면에 부여되는 특성을 다양하다.

(3) 코팅소재의 종류, 형상 및 크수에 대한 자유도가 높다: 금속, 세라믹, 유리, 목재, 플라스틱 및 종이 등이 표면에 코팅이 가능하다. 용사시스템의 이동이 간단하므로 특정부분에도 적용이 가능하지만, 용사 간으로부터 보아 시각이 나타나는 복잡한 형상에 대한 적용은 곤란하다.

(4) 코팅시 소재변형 및 재질변화가 적다: 코팅 중 소재의 손상을 제외할 수 있기 때문에 재료의 일반성상화 및 일반화에 의한 소재변형이 적다.

(5) 부합재료의 코팅이 가능하다: 복수재료의 동시 혼합재가 가능하므로, 중합된 코팅과 조성이 다른

Fig. 1 Diagram of thermal spray coating process
Table 1 Surface improvement method and character

<table>
<thead>
<tr>
<th>표면처리</th>
<th>코팅물질</th>
<th>기본제료</th>
<th>모래 형상</th>
<th>성형속도 (μm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>용 사</td>
<td>금속, 세라믹, Cermet</td>
<td>금속, 세라믹, 플라스틱, 목재, 제지</td>
<td>내부포도흡근</td>
<td>0.25</td>
</tr>
<tr>
<td>도 급</td>
<td>금속, 합금</td>
<td>진도성 물질</td>
<td>부착된 형상</td>
<td>0.02 4.1</td>
</tr>
<tr>
<td>CVD</td>
<td>내열금속, 세라믹, 유화물</td>
<td>증착온도(500 2000℃) 와 증착물질의 화학적 성질의 격변이 가능한 물질</td>
<td>부착된 형상</td>
<td>0.16 33</td>
</tr>
<tr>
<td>PVD</td>
<td>전공증착</td>
<td>순금속, 합금, 화합물</td>
<td>기기의 포함되지 않은 금속, 유리, 플라스틱</td>
<td>부착된 형상</td>
</tr>
<tr>
<td></td>
<td>Sputtering</td>
<td>순금속, 합금, 산화물, 단화물</td>
<td>도체</td>
<td>부착된 형성은 균만</td>
</tr>
</tbody>
</table>

코팅이 가능하다.
(6) 비평형 상태의 조직이 가능하다: 코팅은 용접작업 가 급격한 온도에 의해 코팅되기 때문에 비정질한 비평 위 조성을 얻을 수 있다. 다시 말해, 코팅제료가 서 불 수 없는 성질을 발전할 수 있다.
(7) 다공성이 형성된다: 코팅내부에 기름이 존재하며, 다공성을 처리하기 위해 엑스레이를 사용하여 자기
온활성 코팅의 영역을 얻을 수 있으며, 기공과 온력순환에 이용할 수 있다.

1.3 용사공정

표면처리법은 일반적으로 (1) 코팅의 밀착성을 확보하는 전처리 (2)소재에 코팅하는 용사공정 (3)용사주의
코팅특성을 형성시키는 후처리의 3개의 공정으로 나누어진다. 용사공정은 목적, 이용된 제조 및 방법에 따라
공정의 일부분을 생략할 수 있다. 높은 밀착성의 코팅
을 필요로 하는 경우, 전처리의 영향이 매우 크다. 비
행하는 용사공자가 모재표면에 깊게 침투하고, 점축밀
적을 크게 하기 위하여, 모재의 표면을 요철형성으로
만들어 표면력을 낮추어야 한다. 또한 모재표면에 부착된
상화물은 가공, 자갈갑, 구조물 등에 물질을 모재표
면에 용사침투, 분출 및 증기 등으로 처리하여 제거하
면 모재와의 밀착력을 높일 수 있다. 용사공정에서 주
위공기의 유입현상을 줄이고 기체유동을 2차의 유동으로
조정할 필요가 있다. 주위공기의 흐름과 3차의 유동
은 다음 입자의 재생과 코팅내부에 기포가 생기는 원
인을 제공하며, 충돌된 코팅이 라필라 구조물 만들어 입자는 결합력을 약하게 한다. 후처리 공정에서의 열
처리는 코팅의 산류성 및 제거하기 위해 시각적 성질과
항상시키기 위한 간접적 혼합형을 얻을 수 있다. 그리고 코팅
표면과 내부로 연결된 기포는 가로막, 에폭시, 탈리온
등을 이용하여 코팅표면에 벽라주면 내식성 및 기계적
특성을 살릴 수 있다.

2. 용사공의 종류

용사 공정은 용사제료를 기열하는 일련의 공정에 의해
가스식 및 전기식으로 대별할 수 있다. 가스식은, 가연성
가스와 산소의 연소에서 발생하는 고온, 고압의 가스를 대기 중심에 고속으로 분출시켜 기체동력 및 제거
성능에 의한 높은 에너지를 얻는 방식이며, 전기식은 방
전에너지를 이용하는 것이다. 일반적으로 용사공정은
Fig. 3에 나타낸 것과 같이 가스공급장치, 용사공, 전기
공급장치 및 가스 유량조절장치로 구성된 다. 용사공 가스를 용사 공기 내부의 압축에 공급되어
혼합한 후, 접촉에 의해 폭발이 일어나면, 고온 및 고
속의 가스가 노출 내부로부터 폭발한다. 폭발된 가스와
염기내에 용사공 분말을 혼합하여 노출로부터 분사된다.

Fig. 2 Thermal spray coating steps

Journal of KWS, Vol. 20, No. 4. August, 2002
입자의 공급은 용사 전의 내·외부에서 이루어지며, 난각수는 가스소화에 의해 가열된 노즐주위로 흘러내려 난각시킨다. 표 2에 따라 용사방법과 특성을 나타내었다. 3. 최근에 개발한 Cold Spray는 용사재료의 용접보다 낮은 온도로 가열한 가스를 노즐로부터 초음속으로 분사하여 단면을 열때 가속화되어 열에 의해 가속되어 전자상태로 분사하여 소성 변형된 코팅이 이뤄진다. 가스는 공기, 질소 및 산소를 사용하고, 용사재료는 금속(Cu, Stainless, Ni, Ti), 플러스틱 및 Cermet과 주로 사용된다. 용사방법의 선택과 산화 및 열처리에 따라 일어나지 않고 복합성은 아주 높은 특성을 가지고 있다. 모세에 부착되지 않은 입자는 제거가 가능하지만, 용사거리가 5~300mm로 대형물 혹은 복잡한 형상의 코팅에는 부적합하다.

3. 용사현상

용사요소에서 용사재료의 형상, 입도분포, 정도, 재료의 열전도성, 비열 및 밀도 등의 열전달상, 고온에 의해 열화 및 용융상태. 용사분위기 성분과 화학반응에 의한 변질, 모재의 종류 및 표면온도, 입자층률과 모재 와의 반응 등 복잡한 현상이 동시에 일어난다. 특히, 용사재료의 가열상태, 용사 전에서 모세설에 도달할 때까지 공기에서의 용융입자의 변형속도가 분위기의 반응, 모재의 층물에 따른 입자의 변형 및 밀착상태. 용사 재료간의 접합 등의 물리적 현상은 코팅특성에 많은 영향을 미친다. 이러한 현상은 용사방법의 종류, 용사조건에 따라 크게 달라진다. 용사현상에서 발생하는 여러 입자 및 가스의 특성을 살펴보면 다음과 같다.

3.1 고온·고속가스의 유효

입소 및 방해에 의해 발생되는 가스의 속도와 온도는 상호관계를 가지므로 온도를 알면 대기층에 용사된 입자에 대한 특성이 예측할 수 있다.

Table 2 Thermal spray method and characteristic

<table>
<thead>
<tr>
<th>칼럼제</th>
<th>용사방법</th>
<th>화형온도 (°C)</th>
<th>입자속도 (m/s)</th>
<th>용사시간</th>
<th>용사재료</th>
</tr>
</thead>
<tbody>
<tr>
<td>연소 가스</td>
<td>Flame 용사</td>
<td>~3300</td>
<td>~200</td>
<td>산소와 아세틸렌의 혼합기를 열방으로 이용하며, 용사재료에 따라 용접, 용봉, 분말용사로 구분</td>
<td>금속, 플라스틱, Cermet</td>
</tr>
<tr>
<td>고속 Flare 용사</td>
<td>HVOP, HVAF</td>
<td>~3300</td>
<td>~900</td>
<td>고압과 산소와 탈하소의 가스를 열방으로 이용하며, 용사재료에 따라 용접, 용봉, 분말용사로 구분</td>
<td>금속, 플라스틱, Cermet</td>
</tr>
<tr>
<td>전 기</td>
<td>아크용사</td>
<td>~5500</td>
<td>~250</td>
<td>2개의 금속의 이어져 사이에 아크를 발생시키켜 용접용</td>
<td>금속, 합금</td>
</tr>
<tr>
<td>플라즈마용사</td>
<td>~16000</td>
<td>~450</td>
<td>전기전류의 열화에 가스를 발생시키며 플라즈마를 발생하는 용접방식으로, 분명한 특성에 따라 다양, 간</td>
<td>금속, 합금, Cermet</td>
<td></td>
</tr>
<tr>
<td>가압</td>
<td>~5000</td>
<td>~700</td>
<td>금속, 합금, 플라스틱, Cermet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가압</td>
<td>~4000</td>
<td>~300</td>
<td>금속, 합금, 플라스틱, Cermet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>선폭용사</td>
<td>~5500</td>
<td>~800</td>
<td>산투수 전하를 균질적으로 방전하여 발발</td>
<td>금속, 합금</td>
<td></td>
</tr>
<tr>
<td>전선폭발 분말용사</td>
<td>~5500</td>
<td>~900</td>
<td>산투수 전하를 균질적으로 방전하여 발발</td>
<td>금속, 합금</td>
<td></td>
</tr>
<tr>
<td>레이저</td>
<td>레이저 용사</td>
<td>~250</td>
<td>레이저를 용사의 열원으로 사용</td>
<td>금속, 합금, Cermet</td>
<td></td>
</tr>
<tr>
<td>기 타</td>
<td>Cold Spray 용사</td>
<td>~500</td>
<td>~1200</td>
<td>용사재료의 용융온도 보다 낮은 가스를 초음속으로 분사</td>
<td>금속, 플라스틱, Cermet</td>
</tr>
</tbody>
</table>
3.2 융용입자의 가속 및 가열속도

양호한 코팅을 위하여 기본적으로 입자의 융용온도가 일정하게 유지되어야 하며 치명적인 코팅이 되도록 입자 가 충분히 가속되어 모체와 충돌하여야 한다. 분말용사
의 가속과 가열은 동시에 진행되며, 입자의 가속은 가
스의 제작방향과 비례하지만, 가속에 따른 화합내의
계변간의 힘에 비례하여 대칭을 하여 모체와 충돌하며, 비행
체의 가스유동에 따라가는 경향이 생긴다. 융용입자
의 속도변화는 다음과 같은 방정식으로 계산이 가능하
다. 여기서, \(U \)는 속도, \(\rho \)는 밀도, \(\nu \)는 입자와
가스, \(C_r \)는 항력계수이다. 수치계산에서 정성에 기인하
는 항력계수는 \(Re \)수에 달라질 수가 크다.

\[
\frac{dU}{dt} = \frac{3}{4} \frac{\rho_k C_r D}{\rho_p} (U_k - U_p)
\]

Fig. 5는 입자경에 따른 노즐속 중심의 속도변화를 나타낸 것으로 \(3 \mu \)입자는 노즐 내에서 가스와의 혼
합이 충분히 이루어지며 분출하기 때문에 급격한 속도 감
속이 일어난다. 하지만, 입이가 클수록 노즐 선단에서
부터 속도가 정지적으로 증가하고 있다. 이러한 이유는
입이가 작은 경우와는 반대로 노즐 내에서 가스와의 충
분한 혼합이 이루어지지 않아서 노즐선단에서부터 계속
적으로 가스의 운동량이 입자에 전달되어 입자의 운동
량이 커지기 때문에 입자의 속도성이 증가하고 있다.

Fig. 6은 클라즈마 용사를 이용한 알루미늄 입자의 노즐
속 중심에서의 표면온도 분포를 측정치와 계산치
을 비교한 것이다. 입이가 작을수록 가열과 냉각이 쉽
게 일어나며, 입이가 클수록 가열시간이 길어진다. 특
히, 열전도율이 낮은 세라믹입자는 표면이 융용되어도
입자의 중심부는 고체상태로 모체와 충돌하므로 입이
표면을 고려하여야 한다.

3.3 융용입자의 충돌·변형

융용입자는 충돌전에 융용상태가 되며, 역적은 충돌
과 함께 변형하여 융성한다. 입자와 모체표면에 충돌하
여 변형하는 시간은 근사적으로 입자의 작경에 속도를

Journal of KWS, Vol. 20, No. 4, August, 2002
나는 값으로 구할 수 있다. 즉, 50㎛의 입자가 200 %로 속도를 가졌다면 변화의 필요로 하는 시간은 0.25 μs가 된다. 변형량 상은 응고성상과 비교하여 매우 고속 이므로, 변형과정과 응고과정은 독립적으로 취급하는 것이 가능하다. 응용입자는 층층적 운동에너지가 층층 후, 입자의 내부운동을 일으켜 점성상태 에너지가 산란한다고 가정함으로써 층층은 입자간의 직경을 \(R_o \) 입자속도를 \(U_p \) 하면 근사식은 다음과 같다. 하기의 방정식에서 층층속도는 직경에 큰 영향을 미치지 못할 수 있다.(10)

\[
R_o / r_o = 1.48(\rho_p U_p r_o / \mu_p)^2
\]

3.4 응사코팅의 형성

응사에 의한 코팅특성을 살펴보면, 모래면을 합하여 분해하는 입자는 응상체이며, 그 표면은 산화로부터만 찾아온다. 입자는 모래면 혹은 미리 형성된 코팅표면에 충돌하여, 급속으로 높게 퍼져서 집합하여 응용 입자가 계속해서 증착된다. 형성된 코팅은 Fig. 7에서 나타난 것과 같이 일반적으로 응용입자에 포함된 기공, 입자방향성의 대면에 존재하는 산화물, 입자와 입자 사이에 존재하는 공동상, 입자면의 구조에 따른 응용입자, 입자중심에 발생한 응용의 고체 합이 존재한다.(11)

입자에 포함된 기공 및 산화물은 코팅표면의 격렬, 응용입자의 수열도 부분 및 비행시간, 난류 절류, 공급된 기체와 입자의 종양비, 입자의 축돌 각, 변형과정, 피복내의 전류공력, 주위환경과 입자와의 반응, 응용 입자의 가속, 기체 표면의 조도와 처리무늬 및 표면산화수의 미세한 영향으로 발생한다. 코팅의 일반적인 특성은 다음과 같다.

(1) 코팅은 일반적으로 응상성의 응용입자가 연결된 라 멜라구조이지만, 실제 고온의 응용입자가 비정형에 부분적으로 산화상이 발생하고, 주위기체가 혼합되며, 응용입자가 침운의 모래와 충돌할 때 급속 냉각되어 충분한 화학적 결합이 이루어지지 않기 때문에 입자의 길이가 완전하지 못하다. 입자의 길이를 유지 및 응용은 위, 아래 및 면으로 진행되며, 진행시간 및 운도공사가 다르기 때문에 라멘라 구조는 상하로 존재하며, 내부응력이 발생하여 라멘라 충간의 미끄러짐 현상이 발생하여 균열이 일어난다.

(2) 고온 응상상태의 입자는 화학적 변화에 의해 조성 변화한다. 탄소강의 탄소, 탄화물 세리믹의 탄소 및 산화, WC-Co의 W₂C 및 Co₃W₁C로의 변화가 생성한다.

(3) 응상상태의 입자는 모래표면에서 급속응고가 일어난다. 급속응고의 응고속도는 100 mm/s -1억 mm/s이며, 세리믹은 10 mm/s -100 mm/s이다. 이와 같이 응고에 의해 고온상태의 동질성을 이어나는 조직은 비정형 상태가 된다.

(4) 응용입자는 충돌 후, 라멘라 구조에 의해 자유롭게 수순이 일어나지 않도록 구속되므로 입자의 내부에는 산화응력이 발생한다. 일반적으로 입자의 구조는 직접적인 성형구조의 구조에 대한 산화응력이 더 큰 것으로 나타난다. 대부분의 경우 코팅의 두께를 수십㎛의 코팅을 한변으로 형성하지만, 한변의 코팅에도 전류응력이 발생한다. 따라서, 응사코팅의 두께를 1mm 이상으로 할 경우 세정한 주위를 기울여야 한다. 또한, 모래와 응상재료의 일정 채용수에 따른 전류응력이 발생한다. 이러한 이유로 본드코팅이 사용된다.

4. 응상재료

응상재료는 응상방법의 개발에 따라 다양한 재료가 개발되었으며, 최근에는 복합 응상재료 개발에 많은 연구가 진행되고 있다. 응상재료로서는, 순금속과 합금금속, 산화물과 탄화물, 질화물 등의 세리믹계, 금속간화합물계, 플라스틱계로 나누어지며, 재료의 형태는 응용법에 따라 다를 뿐, 몫, 분말, 압출해서 구분되어 있다. 분말의 경우 응용시간을 고려하여 입력을 일반적으로 수 \(\mu m - 100mm \) 정도로 하고 있다. 표 3에 응상재료의 물리적인 특성을 나타내었다.

4.1 금속계 재료

열전도율이 뛰어나고 재료 중심부의 응용시간이 매우 빠른 특징을 가지고 있으며, 금속 및 세리믹 표면을 강화하기 위한 결정 중 코팅과 모래의 내식, 내마모, 내
Table 3 Physical properties of thermal spray materials

<table>
<thead>
<tr>
<th>용사제료</th>
<th>밀도 (g/cm³)</th>
<th>용점 (℃)</th>
<th>열전도율 (cal/cm·s·K)</th>
<th>전기저항율 (Ω·cm)</th>
<th>열팽창율 (K⁻¹×10⁻⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>2.70</td>
<td>660</td>
<td>0.57</td>
<td>2.50×10⁶</td>
<td>23.2</td>
</tr>
<tr>
<td>Cu</td>
<td>8.85</td>
<td>1083</td>
<td>0.95</td>
<td>1.67×10⁶</td>
<td>16.5</td>
</tr>
<tr>
<td>Fe</td>
<td>7.87</td>
<td>1535</td>
<td>0.19</td>
<td>9.71×10⁶</td>
<td>11.8</td>
</tr>
<tr>
<td>Ti</td>
<td>4.50</td>
<td>1683</td>
<td>0.05</td>
<td>43.2×10⁶</td>
<td>8.6</td>
</tr>
<tr>
<td>Mo</td>
<td>10.28</td>
<td>2620</td>
<td>0.33</td>
<td>5.0×10⁶</td>
<td>4.8</td>
</tr>
<tr>
<td>W</td>
<td>18.70</td>
<td>3410</td>
<td>0.42</td>
<td>5.0×10⁶</td>
<td>4.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.0</td>
<td>2049</td>
<td>0.06</td>
<td></td>
<td>5.4</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>5.9</td>
<td>2677</td>
<td>0.007</td>
<td></td>
<td>10.5</td>
</tr>
<tr>
<td>TiN</td>
<td>4.08</td>
<td>2932</td>
<td>0.068</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>SiC</td>
<td>3.10</td>
<td>2700</td>
<td>0.019</td>
<td>1.0×10⁴</td>
<td>3.1</td>
</tr>
<tr>
<td>TiC</td>
<td>4.94</td>
<td>3250</td>
<td>0.085</td>
<td>6.1×10⁶</td>
<td>6.4</td>
</tr>
<tr>
<td>WC</td>
<td>15.10</td>
<td>2720</td>
<td>0.144</td>
<td></td>
<td>19.2×10⁶</td>
</tr>
<tr>
<td>ZrB₂</td>
<td>6.09</td>
<td>3200</td>
<td>0.167</td>
<td>9.7×10⁶</td>
<td>5.9</td>
</tr>
<tr>
<td>MoS₂</td>
<td>6.24</td>
<td>2020</td>
<td>0.116</td>
<td></td>
<td>21.6×10⁶</td>
</tr>
</tbody>
</table>

열 및 내구성 산화성 등의 향상을 위한 기능성 코팅에 사용된다. 강재의 부식방지용으로 알루미늄, 이연 및 알루미나-아연 합금이 주로 사용된다. 알루미늄과 같은 전도성 코팅재료로 사용되며, Ni-Cr합금은 내식성에 우수하여 고온하에서 내산화성인 고강도 재료로 사용되며, DCrAl 합금은 내식성 및 내구성 산화성에 사용된다. Ni-Al합금은 응용시 다양 한 열을 방출하여 도개표면을 가열하기 때문에 밀착성이 훌륭한 코팅을 얻을 수 있으며, Mo, W등의 고용량 급속은 고온재료 및 내마모 재료로 사용된다.

4.2 세라믹 재료

일반적으로, 온도 및 압력에 대해 매우 안정적이고, 경도가 높기 때문에 고온 및 내마모성을 요구하는 표면처리에 사용된다. 산화물 코팅에 사용되는 Al₂O₃는 열전도율이 가장 높은 특성을 가지고 있으며, 급속재료에 비해 약간의 밀착성을 가지기 때문에 내마모성이 우수하지만 충격에 대한 약하나 하며, TiO₂를 참가하면 코팅의 기공률이 감소하고 치밀한 코팅을 얻을 수 있다. ZrO₂는 일반적으로 약일을 얻기 위하여 열팽창률계수가 급속에 가깝지만 온도에 의한 결정체 변화와 밀도변화가 동시에 일어나므로 칼링 된 고온에 적합한 티스텐, 티타늄 및 크롬 등의 단화물은 고경도의 특성을 가지고 있으며, 처음 산소와의 반응에 비교적 낮은 온도를 가진다.

4.3 Cermet 재료

탄화물(TiC, ZrC, B₄C, WC), 산화물(Al₂O₃, ZrO₂, ThO₂)등의 고용량 세라믹과 Fe, Mo, Ni, Co 및 Cr 등의 급속을 조합한 합성재료로 기계적 성질이 우수하며 절삭공구, 내열용 부품의 코팅에 사용되며, 부식성완화는 내식성과 유사한 Ni, NiCr 및 CoCr 등에 첨가하여 사용한다. 일반적으로, 혼합비 및 세라믹 분말의 입경이 풍부하게 존재하여 초저열에 많은 영향을 미친다. WC-Co계는 500℃이하에서 변형이 일어나지 않지만, 500℃이상에서는 W₂C 및 Co₃W₆C으로 변형이 일어나는 특성을 가지고 있으므로 저온·고속 용사법이 필요하다. Cr₃C₂계는 약 820℃의 고온에서도 내마모성이 우수하지만, 코팅의 미세구조가 불물입하고 산화반응을 일으키는 결정함을 가지고 있다. MoB·Ni계는 고온의 환경에 사용에 적합하며, MoB표면은 Ni를 금형상태에서 코팅하여 사용한다.

4.4 플라스틱계 재료

플라스틱 재료는 내약성성과 내구성이 좋은 방식성
코팅을 얻을 수 있다. 또한 유출을 사로잡지 않고 코팅을 할 수 있기 때문에 대형 형상물의 코팅이 가능하다. 용사공정에서 용융온도와 분해온도가 달라지며, 공기와의 반응으로 완전증발이 일어나지 않아야 하며, 젊은이 낮아야 한다. 또한 모서리 코팅의 용융온도까지 예열하는 공정이 반드시 필요하다. 코팅에는 용사시 기술에 의하여 내교가 연료화함 코팅 종류를 결정하는 가정하는 수지(플라크달린, FVA, 나일론)와 가원에 의해 연료와 동시에 분해거의 결합을 강화하는 열처리강화 수지(예폭시)가 있다.

5. 용사코팅의 On-line process control system

고부가가치 용사코팅의 산업적 활동의 중대에 따른 제품의 고급화 및 신뢰성 확보는, 용사코팅 공정 및 특성평가가 일원화된 On-line process control system으로 가능하다. 용사코팅 공정에서, 코팅제품의 불량발생은 기기의 대상솔로와 결합한다. 일반적으로, 산업현장에서 코팅의 공정에 따른 코팅특성 데이터가 전부한 상태에서, 숭립의 경험에 의하여 코팅이 이루어지고 있기 때문에 코팅의 활성화, 건물유형, 의약품, 기공공부의 부식 및 발생하여 기기의 수용단축에 따른 비용증대를 초래하고 있다. 이러한 문제점을 해결하기 위해 본원의 유동특성, 용융입자의 비행시간, 입자와 Vortex관계, 용융입자의 축들 각, 변형 과정, 피복내의 전류유형, 용융 입자와의 가스의 확산, 표면 전화물의 제거방법, 모세의 미각 등의 부분구조와, 상호관계 규범에 대한 연구가 진행되고 있지만, 지금까지 보다 정량적이고 정량적인 정보가 부족한 실정이다. 따라서 제품의 신뢰성, 제한성 및 생산효율 증가를 위한 용사코팅의 고도화 기술개발을 위해 제조학, 열역학, 유체역학 및 제조공학을 연관시킨 용사코팅 프로세스 및 특정평가 기술개발이 필요하다. 아래의 제조시스템, 용사시스템 및 제조분석 정보를 하나로 연결하는 On-line process control system을 구축할 경우, 소재간의 관찰을 적절히 조절할 수 있고, 기존제품의 활용을 극대화 할 수 있기 때문에 표면처리와 관련된 산업적전에 확대 적용 할 수 있다고 사료한다. On-line process control시스템은, 기존의 코팅보다 내부포모가 안정화 동시에 환경에 향상되어 산업상의 순수변경 및 원가 절감에 향기적으로 기여할 수 있는 초미리의 분말 (Nano powder)을 보다 효율적으로 이용할 수 있다.

6. 용융분야

용사코팅은 각종 건축물, 기계장치, 기구 등의 부재, 부품의 표면에 모세보다 고도의 성능 혹은 모세의 기능을 나타낼 수 있는 역할을 부여하는 것을 목적으로 한다. 즉, 부재 및 부품의 내장성, 내마찰성, 내열성, 단 일성 등의 성질을 향상시킬 수 있다. 그리고 표면의 전도성, 전기저항성, 열 방사성, 이온 전도성 등 모세가 가지고 있는 기능을 부여할 수 있다. 용사코팅 중의 효과는 단일성능을 향상시키는 것뿐만 아니라, 결 과적으로 복합적인 특성을 부여함으로써 모세의 성능향상을 동시에 반영시키는 것이다. 용사코팅의 용융은 용사법의 특징을 기술적으로, 경제적으로 검토한 후, 적
Table 4 Application of thermal spray coating

<table>
<thead>
<tr>
<th>사용분야</th>
<th>용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>자동차</td>
<td>내마모 내열</td>
</tr>
<tr>
<td>항공</td>
<td>내열 내석 내마모</td>
</tr>
<tr>
<td>전기</td>
<td>내열 내석</td>
</tr>
<tr>
<td>시멘트</td>
<td>내열 내석 내마모</td>
</tr>
<tr>
<td>화학</td>
<td>내열 내마모</td>
</tr>
<tr>
<td>금속</td>
<td>내열 내마모</td>
</tr>
<tr>
<td>동력</td>
<td>내마모 내열 내석</td>
</tr>
<tr>
<td>일반</td>
<td>내마모 부착 내열 내석</td>
</tr>
<tr>
<td>섬유</td>
<td>내마모 내석</td>
</tr>
</tbody>
</table>

철한 용사업을 선택하고 용사료, 용사조건 및 사공법을 충분히 숙지한 후, 적용하여야 한다.

참고 문헌