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1. Introduction

  Gas metal arc welding (GMAW) is a welding method 
that creates an arc between the consumable electrode 
and the base material to cause melting. It is widely used 
in various industries such as ship building and automo-
bile manufacturing, and is suitable for automatic weld-
ing1). However, since the welding quality in the arc 
welding processes depends on the skill of the operator, 
there is a limit to ensuring good welding quality and 
improving productivity. To solve the inevitable working 
environment problems in arc welding process such as 
harmful gas, dust, and strong arc, research on the con-
struction of an automated welding system using a robot 
or other welding equipment has been actively con-
ducted recently2-7). 
  The back-bead refers to a weld bead formed on the 
back side of the weld joint. Back-bead formation is 

considered as one of the important factors in determin-
ing the mechanical properties and weldability of the 
welded structure8). The shape of a back-bead also varies 
greatly depending on the welding motion, and some-
times a back-bead may not be formed even though the 
welding is performed under the same welding conditions. 
Therefore, in order to ensure good welding quality, it is 
necessary to develop a technology that monitors the back- 
bead formed on the backside of the welds in real-time.
  Many studies have been conducted to predict a good 
weld bead and to improve the quality of the weld in the 
GMAW process. The GMAW process variables were 
analyzed and optimized using various methods such as 
mathematical statistical experiment design, existing 
welding process improvement, linear regression model, 
and artificial neural network. Lee used multiple regression 
modeling for controlling welding process variables to 
obtain the desired back-bead shape, and reversed this to 
develop a process variable prediction system that could 
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be used in real-time automated welding9). Jeong mod-
eled the welding process to check the relationship be-
tween the welding variable and the bead shape, and 
presented a method to obtain the optimal back-bead 
shape by back-propagation using the welding process 
variable as an input value10). Lee proposed a method to 
predict the width and depth of the back-bead using an 
artificial neural network when four welding variables 
were input as root spacing, welding current, arc volt-
age, and welding speed11). Kim improved the accuracy 
of the mathematical model for the width and height of 
the back-bead and predicted the shape of the back-bead 
by using statistical methods in the open-gap type of 
pipeline joining process12). Nagesh used the back-
propagation neural network algorithm to correlate the 
welding process variables with the characteristic varia-
bles of the weld bead geometry and penetration, and in-
vestigated the prediction of the bead shape and pene-
tration using this13). Cho analyzed the behavior of the 
molten pool and the weld bead in V-groove GMA 
welding with and without a root gap for various weld-
ing positions14). Jesús Emilio Pinto-Lopera developed a 
system that measured the width and height of weld 
bead in real-time in the GMAW process using a vision 
camera and optical sensor, and compared it with a 3D 
scanner15). There has been no previous study to predict 
and detect back-bead formation only using the welding 
current signal measured in real-time without additional 
equipment such as a vision camera during butt GMAW.
  Recently in many recent scientific experiments, deep 
learning techniques have demonstrated impressive ver-
ification performance through learning based on vast 
amounts of data collected16-18), and some scholars have 
proposed a method of detecting a correlation or a crit-
ical relationship in the frequency domain in order to de-
termine whether the signal being verified is normal or 
faulty by using the characteristics of the signal meas-
ured in the frequency domain19-20). Chu suggested that 
in the short circuit transfer mode GMAW process, the 
time-frequency method is an effective method to detect 
welding defects and check welding quality21).
  This study aims to propose a new algorithm based on 
Spectrogram-CNN for real-time detection of back-bead 
generation or not. In the proposed method, the character-
istic of the time- frequency image (spectrogram) was 
generated from the difference in the frequency ampli-
tude of the welding current signal with and without 
back-bead generation, and trained by a convolution 
neural network (CNN). In order to accelerate the train-
ing of the CNN model, the proposed model was trained 
using a highly efficient GPU process for unsaturated 
neurons and convolution tasks. Then, in order to eval-
uate the performance of the trained model, the perform-
ance of the proposed model was verified using new 

welding data which have not been included in the train-
ing data. As a result, the proposed algorithm demon-
strated excellent detection performance regarding back- 
bead formation.

2. Experimental Procedures

  The welding material used in this study was GA 590 
galvanized steel of 2.3 mm in thickness.  Table 1 shows 
the chemical composition and mechanical properties of 
the specimen material. As shown in Fig. 1, the welding 
test sheet was processed in a 150 mm×150 mm stand-
ard and used for the welding experiment, and the weld-
ing experiment was performed in a butt joint method at 
a working angle of 90° by a 0° torch.
  The welding system used GMAW (Austria: Fronious 
TPS-4000) in constant voltage short-circuit transition 
mode, and it was carried out by a welding stage moving 
in the x, y 2 axis direction. The welding current and 
voltage values in GAMW were automatically con-
trolled according to the wire feed rate by the synergy 
mode program. Fig. 2 shows the configuration of the 
welding system.
  The welding conditions are shown in Table 2. To pro-
tect the welding bead from oxidation, a mixed gas of 
Ar-90% and CO2-10% was used as the shielding gas, 

GA 
590

Chemical compositions (wt%)
mechanical 
properties

C Mn Si S P Fe
YS

(MPa)
TS

(MPa)
EI

(%)

0.0825 1.440 0.132 0.002 0.011 Bal 583 628 25

GA 590 GA 590

Welding direction

150 mm

150 mm

2.3 mm
Weld gap

Fig. 1 Welding test sheets
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Fig. 2 Welding signal measurement system

Table 1 Chemical composition and mechanical properties 
of the base metal
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and the AWS A5.18 ER70S-3 standard wire of 1.2 
mmØ was used as the welding wire. The contact tip to 
workpiece distance (CTWD) was fixed at 15 mm. The 
total welding length was 140 mm and the welding ex-
periment was conducted for about 14 seconds. The wire 
feed rate (WFR) was set to 4 m/min, and the experi-
ment was repeated three times in total, taking into ac-
count the cases with and without gaps, respectively. 
The welding signal data from two experiments were 
used as training data, and the welding current signal da-
ta from one experiment was used as validation data. 
During the welding experiment, the welding current 
and arc voltage signals were measured in real-time with 
a DAQ data acquisition device (NI DAQ 9229) at a 
sampling rate of 10 kHz per second.

3. Results and Analysis

3.1 Welding Current Signal Analysis Using STFT

  In this study, a time-frequency analysis was performed 
using the Short-time Fourier transform (STFT) method 
by overlapping 90% of the 0.1-second interval on the 
welding signal. Time-frequency analysis describes how 
the frequency information of a signal changes over 
time. Since the welding current signals have time-series 
characteristics and are nonstationary signals, the local 
Fourier transform can introduce local frequency param-
eters through a window of a constant size by analyzing 
these nonstationary signals. STFT can express the 
time-frequency of a signal and can be expressed mathe-
matically as shown in Equation (1).

  (1)

Where,  denotes the time-frequency spectrum 
of the input welding current signal ′ and t and n de-
note data sampled in the time domain and the fre-
quency domain, respectively. The basic function of the 
STFT is to place ′ on the time axis t, created by 

the window function, ′ Where, t and n denote 
modulation and conversion parameters, respectively. In 
this study, the attenuation of the side lobe was large 
while the width of the main lobe was somewhat nar-
row; therefore, the Hanning window function, which 
could eliminate discontinuities, was used as a window 
function. 
  As shown in Fig. 3, under the condition of 4 m/min 
feeding speed, the back-bead was uniformly formed in 
the experiment with a root gap, whereas no back-bead 
was formed in the experiment without a root gap. The 
analysis was performed in the frequency domain and 
the time-frequency domain by selecting the current sig-
nal in the 2-5 second section, excluding the 1-second 
section at the beginning and the end, where the welding 
signal was unstable, of the entire welding area. The 
welding current signal was cut into short data frames at 
0.1-second intervals, and then each frame was over-
lapped by 90%, and the welding current signals trans-
formed over time were each Fast Fourier Fransform 
(FFT). The output of the continuous STFT was ex-
pressed in the time-frequency domain of the welding 
current signal, and it was compared and analyzed for 
the welding current signal in which the back-bead was 
generated and the welding current signal in which the 
back-bead was not generated by STFT on the data div-
ided into small frames that were sequentially overlapped.
  Fig. 4 shows the result of analyzing the frequency 

Select 2~5sec welding regionsSelect 2~5sec welding regions

(a) WFR: 4m/min, root gap: 0mm

Without back-bead

Data 1

Without back-bead

Data 1

(b) WFR: 4m/min, root gap: 0mm

Select 2~5sec welding regionsSelect 2~5sec welding regions

(c) WFR: 4m/min, root gap: 0.5mm

With back-bead

Data 2

With back-bead

Data 2

(d) WFR: 4m/min, root gap: 0.5mm

Fig. 3 Weld bead surface of WFR: 4m/min, welding cur-
rent: 156A, Voltage: 18.3V, weld gap: 0mm and 
0.5mm under a constant welding conditions. (a), 
(c) front view. (b), (d) back side view

Welding parameters Parameter values

Welding speed 600 mm/min

CTWD 15 mm

Wire feed rate 4 m/min

Welding joint Butt joint

Welding wire A5.18 ER70S-3 standard wire

Shield gas Ar-90% + CO2-10%

Root gap 0, 0.5 mm

welding mode short-circuiting GMAW

Table 2 Welding conditions
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component of the welding current signal in the selected 
section. Where, the main frequency component of the 
current signal without back-bead formation was ob-
served in the 57 Hz band; the main frequency compo-
nent of the current signal with back-bead formation was 
observed in the 53 Hz band, which was somewhat low-
er than that of the current signal without back-bead 
formation. The frequency peak showed a harmonic shape 
in the frequency domain of the section with back-bead 
formation.
  The x-axis and y-axis of the spectrogram represented 
the time and frequency bands, respectively, and the 
z-axis represented the magnitude value of the frequency 
for a specific time in color. In this study, based on the 
information observed in the frequency analysis of the 
welding signal, a similar difference was identified in 
the spectrogram according to the back-bead formation. 
In Fig. 5 (a) and (b), the current signal of the selected 
3-second interval among the data acquired at a sam-
pling rate of 10 kHz per second was converted into a 
spectrogram image in the 0-5000 Hz frequency band. 
For more accurate analysis, Fig. 5 (c) and (e) show the 
enlarged spectrogram in the 0-1000 Hz frequency band 
of the 0.1-second interval used as actual training data. 
Where, Fig. 5 (d) and (f) are respectively shown the 3D 
surfaces of Fig. 5 (c) and (e) were expressed. In con-
trary to the magnitude line of the with back-bead spec-
trogram clearly divided due to the frequency compo-
nent in a harmonic shape in the current signal, the mag-
nitude line of the spectrogram of the current data with-
out back-bead formation was not clearly separated and 
was evenly distributed in the 0-200 Hz band.

3.2 CNN Theory and Performance Evaluation

  3.2.1 Training process
  Fig. 6 shows the flowchart of the back-bead detection 
algorithm presented in this study. It shows a supervised 
learning-based CNN structure that labels each training 
data in the input layer and performs training. The 

weights of the convolution layer kernel are trained by 
the back propagation algorithm in all training processes. 
The proposed CNN model consisted of an input layer, 
three convolution layers, two subsampling layers, a 
fully connected layer, and an output layer, and training 
was performed in a keras22)-based environment. 
Rectified linear units (ReLU) were selected as the acti-
vation function and placed in the layer after all con-
volutional layers. The dropout function23) was set after 
the maxpooling layer and the fully connected layer, re-
spectively, to prevent overfitting, and the dropout rate 
was set to 0.5. The error function was calculated using 
the Adam optimizer24), which updates the weights by 
storing the exponential mean of the slope and the ex-
ponential mean of the slope squared.
  In general, the convolution operation in the convolu-
tional layer was performed by an N×N kernel. In the 
CNN training model proposed in this study, a feature 
map was generated by a kernel and convolution oper-
ation in the convolution layer using images of 128 × 
128 pixels (with 3 color planes) as input. Therefore, the 
number of feature maps was the same as the number of 
kernels. In the convolution layer, the kernel size was set 
to 3×3, stride 1, and the max pooling layer kernel size 
was set to 2×2 and stride was set to 1 for subsampling. In 
the last fully connected layer, a fully connected neural 
network was constructed using the features extracted 
from the upper convolution layer as an input of a 
one-dimension vector form (64×30×30=57600 parame-
ters), and the probability value for the class to which 
the data value entered by the weight of each parameter 
belonged was expressed by the softmax function. 
Finally, training was performed by setting the output 
layer to output 1 when back-bead generated and 0 when  
back-bead not generated.
  According to the experimental plan in Section 2, the 
data acquired through a total of three experiments were 
composed of a total of 4760 training datasets by over-
lapping the 0.1-second interval by 90% excluding 1 
second at the start and end of welding. As a result of 
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Fig. 4 FFT result of welding current signal: (a) WFR: 4 m/min, root gap: 0 mm, (b) WFR: 4 m/min, root gap: 0.5 mm
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performing a total of 200 epochs with the initial learn-
ing rate set to 0.001 and the batch size set to 16, the ac-
curacy converged to 1, and the loss value to 0 as shown 
in Fig. 7. In Fig. 7, no overfitting phenomenon in 
which validation loss increased during the learning 
process was observed. Of the total training dataset, 952 
image data, accounting for 20%, were randomly ex-
tracted and used as validation data, and the validation 
results in the training process were shown in Fig. 8. As 
a result of predicting that no back-bead was formed for 
the input data, 939 out of 952 validation data were ac-
curately predicted with 13 incorrectly predicted, dem-
onstrating a validation accuracy of 98.6%. In the oppo-
site case, 946 of the 952 validation data generated by 
the back-bead were accurately predicted, with six in-
correctly predicted, demonstrating an accuracy of 

99.3%, which was identified in the training process of 
the CNN model. 

  3.2.2 Testing process
  As shown in Fig. 9, in order to verify the detection 
performance of the CNN model, the welding current 
signal, used in the training data, was applied to the 
CNN model to verify the performance. The results for 
the back-bead detection performance were shown in 
Fig. 10 and Table 4 for 120 verification data sets with-
out overlapping at 0.1-second intervals among the 
welding current data of the remaining 12 seconds after 
excluding the unstable current data (1 second in the be-
ginning and the end, respectively) from the entire data 
measured for 14 seconds in the actual welding section.

  Out of a total of 240 test samples, 120 pieces of data 
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Fig. 5 The time-frequency analysis for welding current signal in different welding condition: (a), (b) Spectrogram of se-
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with and without back-bead formation were included. 
As a result of verifying new welding data not included 
in the training data with the proposed algorithm, a total 
of seven detection errors occurred in 120 test samples 
without back-bead formation, demonstrating a detection 
accuracy of 94.2%, five detection errors occurred in 
120 test samples with back-bead formation, demon-
strating a detection accuracy of 95.8%. More errors oc-
curred in the result of without back-bead generation 
(class 0) than result of with back-bead generation (class 1), 
similarly to the validation results from the training 
process. Therefore, it can be explained that the CNN 

1

0.8

0.6

0.4

0.2

0
0 50 100 150 200

Epoch

A
cc

ur
ac

y

Fig. 7 The recognition of training accuracy, validation 
accuracy, training loss, validation loss of pro-
posed CNN structure
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Table 3 Validation data classification result
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Fig. 6 An overview of  proposed back-bead detection method using CNN structure
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based back-bead detection model proposed in this study 
has excellent detection performance.

5. Conclusion

  In this study, butt GMA welding was performed using 
GA 590 MPa grade galvanized steel sheet. After ana-
lyzing the acquired welding current signal in the fre-
quency domain, the features of a time-frequency image, 
a spectrogram, were applied to the CNN model based 
on the difference in the frequency amplitude value of 
the welding current signal to develop an algorithm for 
predicting back-bead formation. As a result of this 
study, the following conclusions were drawn:
  1) In this study, the spectrogram image obtained by 
the STFT frequency conversion was extracted by meas-
uring the welding current generated in the GMAW 
process, and it was trained and validated by labeling 
with 0 and 1 classes indicating whether or not a bead 

was formed
  2) The difference in the shape of the spectrogram im-
age acquired in the time-frequency domain transform 
with and without back-bead formation was identified, 
and the input spectrogram image was visualized as a 
feature map formed in each layer of CNN to show the 
difference between the shape of the feature map with 
and without back-bead.
  3) The prediction performance of the proposed CNN 
model was verified, and the detection performance was 
95.8 % and 94.2 % for the regions with and without 
back-bead, respectively, as a result of applying it to a 
new welding data.
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